

© Copyright 1971 by the American Chemical Society

VOLUME 14, NUMBER 8

August 1971

# Structure-Activity Relationships in Antifungal Agents. A Survey<sup>1</sup>

CORWIN HANSCH\* AND ERIC J. LIEN

Department of Chemistry, Pomona College, Claremont, California 91711

Received January 26, 1971

A survey of the literature has been made to find sets of congeneric antifungal agents whose biological activity has been expressed quantitatively. Linear free energy relations correlating 55 sets of data with hydrophobic and electronic parameters have been formulated. The intrinsic activity of various functional groups under isolipophilic conditions is given on a logarithmic scale. In a number of examples antifungal activity closely parallels antibacterial and hemolytic activity, suggesting that such fungicides bring about their action by membrane perturbation.

We have been interested in the recent efforts to place the discussion of biochemical structure-activity relationships in mathematical terms.<sup>2-7</sup> A useful mathematical model can be constructed from the hypotheses<sup>8,9</sup> formulated in eq 1 and 2. It is assumed

$$\log \frac{1}{C} = -k(\log P)^{2} + k' \log P + k'' \log k_{\rm X} + k''' \quad (1)$$

 $\log k_{\rm X} = k_1 \log P + k_2 ({\rm elect}) + k_3 ({\rm steric}) + k_4 \quad (2)$ 

in eq 1 that the first 2 terms on the right side account for hydrophobic interactions in the movement of drug from point of application to the sites of action. Cin eq 1 is the molar concentration causing a standard biological response ( $LD_{50}$ ,  $ED_{50}$ , etc.). Once the drug has reached the site of action, the biological response will be proportional to the rate or equilibrium constant  $(k_{\mathbf{X}})$  of a critical chemical or physical reaction. We have suggested that a Hammett-like treatment can be applied to  $\log k_{\rm X}$  as shown in eq 2. In these equations, P stands for the octanol-H<sub>2</sub>O partition coefficient of the un-ionized form of the drug unless otherwise noted, and electronic and steric effects of the different members of a set of congeners can be approximated by the use of suitable substituent constants. In eq 2,  $\log P$  accounts for the last partitioning step of drug onto the active site or enzyme. Substitution of eq 2 into eq 1 gives a model of some

(7) A. Cammarata, J. Med. Chem., 11, 1111 (1968).

general utility for which the disposable parameters  $(k_1-k_4)$  can be calculated by the method of least squares. It may also be profitable to explore the use of higher order equations.<sup>10-12</sup> It is possible that, for any given set of congeners, modifications have been made in such a way that not all substituent effects (electronic, hydrophobic, and steric) are evident or important. Thus one must employ regression analysis and analysis of variance to establish the validity of any given term. For example, although Taft's steric parameter  $E_s$  may not generally be useful, in certain instances critical insight into biochemical reaction mechanisms can be gained through its use.<sup>13</sup> In exploring the electronic effect of substituents on reactions, we have found the constants  $\sigma$ ,  $\sigma^+$ ,  $\sigma^-$ , and  $E_{\rm R}$  to be most useful.<sup>2</sup>

Since a very large amount of work has been done in studying fungicides and data are available on a variety of congeneric sets of fungicides, it seemed worthwhile to attempt a survey and summary of the results in this field. While we are interested in all aspects of the structure-activity problem, we are particularly interested at present in assessing the usefulness of the parameter log  $P_0$ . This constant represents<sup>2</sup> the ideal lipophilic character for a set of congeners acting via a common mechanism. For 16 different sets of hypnotics we found<sup>9</sup> log  $P_0 = 2$ . For nonspecific Gram-negative drugs we found<sup>14</sup> log  $P_0 \cong 4$  and, for Gram-positive organisms, log  $P_0 \cong 6$ . We are interested in comparing log  $P_0$  for fungicides with the other established log  $P_0$  values.

As we have so often observed, while data are available from a wide variety of sets of fungicides, the derivatives chosen are usually not ideal for separating the various substituent effects. Nevertheless, some useful gen-

<sup>(1)</sup> This work was supported by National Institutes of Health Grant CA 11110.

<sup>(2)</sup> C. Hansch, Accounts Chem. Res., 2, 232 (1969).

<sup>(3)</sup> C. Hansch, J. Med. Chem., 11, 920 (1968).
(4) W. Scholtan, Arzneim.-Forsch., 18, 505 (1968).

 <sup>(1)</sup> W. Schöttun, Historica O'solit, **10**, 500 (1968).
 (5) W. P. Purcell and J. M. Clayton, J. Med. Chem., **11**, 199 (1968).

<sup>(6)</sup> K. Boček, J. Kopecký, and M. Krivucová, Experientia, 23, 1038 (1967).

<sup>(8)</sup> C. Hansch and T. Fujita, J. Amer. Chem. Soc., 86, 1616 (1964).

 <sup>(9) (</sup>a) C. Hansch, A. R. Steward, S. M. Anderson, and D. L. Bentley, J. Med. Chem., 11, 1 (1968); (b) J. T. Penniston, L. Beckett, D. L. Bentley, and C. Hansch, Mol. Pharmacol., 5, 333 (1969).

<sup>(10)</sup> C. Hansch and S. M. Anderson, J. Med. Chem., 10, 745 (1967).

<sup>(11)</sup> T. Fujita and C. Hansch, *ibid.*, **10**, 991 (1967).

<sup>(12)</sup> J. A. Singer and W. P. Purcell, *ibid.*, **10**, 1000 (1967)

<sup>(13)</sup> C. Hansch and E. J. Lien, Biochem. Pharmacol., 17, 709 (1968).

<sup>(14)</sup> E. J. Lien, C. Hansch, and S. M. Anderson, J. Med. Chem., 11, 430 (1968).

|                             |                                   |                                  |              |                  |                                   | -Log 1/C obsc         | a                       |
|-----------------------------|-----------------------------------|----------------------------------|--------------|------------------|-----------------------------------|-----------------------|-------------------------|
| Ia                          |                                   | R                                |              | $\log P$         | Eq 11                             |                       | Eq 13                   |
| 0                           | н                                 |                                  |              | 0.20#            | 4 10                              |                       | . 19                    |
| Ĭ                           | 11                                |                                  |              | 0.20**           | 4,19                              |                       | 4,40                    |
| 66 A 2                      | 2-N                               | le                               |              | 0.70             | 4.00                              |                       | 3.19                    |
| j <b>∥</b> − <del>  R</del> | 2,5                               | $-Me_2$                          |              | 1.20             | 5.00                              |                       | 5.00                    |
| · Y·                        | 3.6                               | (OH)-2.5-C                       | 21.          | 0.28             | 2.96                              |                       | 3.96                    |
| ő                           | 0,0                               | 011/2-2,0-0                      | 512          | 1.60             | 2.50                              |                       | 5.50                    |
| -                           | 2,5-                              | $-OI_2$                          |              | 1.02             | 5.52                              |                       | 5.10                    |
|                             | 2,6-                              | $\cdot Cl_2$                     |              | 1,62             | 5.00                              |                       | 5.00                    |
|                             | 2.3.                              | 5.6-Ch                           |              | 3 04             | 5 40                              |                       | 5 40                    |
|                             | 2,0,                              |                                  |              | 1 70             | 5.10                              |                       | 5,10                    |
|                             | 5,0-                              | $(C_4H_4)$                       |              | 1.78**           | ə.10                              |                       | 5, <b>22</b>            |
|                             | $2-\mathcal{N}$                   | Ie-5,6-(C₄H₄                     | )            | 2.28             | 5.10                              |                       | 5.05                    |
|                             | 2.3-                              | Cl2-5,6-(C4H                     | H₄)          | 3.20             | 7.00                              |                       | 6.70                    |
|                             | ,                                 |                                  | -,           |                  |                                   |                       |                         |
|                             |                                   |                                  |              | ,                | ——————————Log 1/µm c              | m~2 obsd <sup>b</sup> |                         |
| lb                          | R                                 | х-                               | $\log P$     | Eq 37            | Eq 38                             | Eq 39                 | Eq 40                   |
|                             | C.H.                              | Br                               | 1.05         | 3.07             | 3 00                              |                       | 2 65                    |
|                             | 0121125                           |                                  | 1.05         | 0.01             | 0.09                              |                       | 0,00                    |
|                             | $C_{6}H_{13}$                     | CI                               | -1.95        |                  | 0.91                              | 0.33                  | 1.18                    |
| +N                          | $C_{8}H_{17}$                     | Cl                               | 0.95**       | 1.41             | 1.62                              | 1.91                  | 2.38                    |
| ÷x-                         | CuaHar                            | Cl                               | 0.05         | 2.57             | 2.66                              | 2.05                  | 3 15                    |
| I,                          |                                   |                                  |              | <b>_</b>         | 2,00                              | 2.00                  | 0,10                    |
|                             | $C_{12}H_{25}$                    | CI                               | 1.05         | 3,01             | 2,94                              | 3.06                  | 3.39                    |
|                             | $C_{14}H_{29}$                    | Cl                               | 2.05         | 3.28             | 3,51                              | 3.17                  | 3.73                    |
|                             | CraHan                            | Cl                               | 3 05         | 3 20             | 3 32                              | 2.97                  | 3 51                    |
|                             | O 11                              | CI                               | 4.05         | 0.20             | 0.02                              | 2.01                  | 0,01                    |
|                             | $C_{18}H_{37}$                    | CI                               | 4,00         | J. 00            | 2.93                              | 3.00                  | 3.08                    |
|                             |                                   |                                  |              |                  | т                                 |                       |                         |
| -                           |                                   | n                                |              | <b>T</b> ()      | L                                 | og I/C obsd°-         |                         |
| Ic                          |                                   | R                                |              | Log P            | Eq 26                             |                       | Eq 28                   |
|                             |                                   | <i>n-</i> Bu                     |              | 1.34             | 2.07                              |                       | 2.29                    |
| HN NR                       |                                   | n Ani                            |              | 1 84             | 9 54                              |                       | 2 76                    |
|                             |                                   | 70-AIII                          |              | 1,01             | 2.01                              |                       | 2.10                    |
| Ĥ                           |                                   | n-Hex                            |              | 2.34             | 2.92                              |                       | 3,13                    |
| Ŝ                           |                                   | n-Hep                            |              | 2.84             | 3.10                              |                       | 3.55                    |
|                             |                                   | n-Oct                            |              | 3.34             | 3 43                              |                       | 3 75                    |
|                             |                                   | n Nov                            |              | 9 64             | 0, 10                             |                       | 0.115                   |
|                             |                                   | n-in on                          |              | 0.04             | 2.99                              |                       |                         |
|                             |                                   |                                  |              |                  | <b>T</b>                          | ~                     |                         |
|                             | -                                 | n                                | т.           |                  | Log 1) (                          | Jobsd                 |                         |
| Id                          | $\mathbf{R}_{1}$                  | $\mathbf{R}_2$                   | Log P        | , Fd 31          | Eq 32                             | Eq 33                 | Eq 34                   |
| $\mathbf{R}_2$              | HOEt                              | $C_5H_{11}$                      | 0.07         | 1,76             | 2.09                              | 2.19                  | 2.32                    |
| . <u>–</u> N                | HOEt                              | CuHa                             | 3.07         | 3 65             | 4 13                              | 4 43                  | 4 28                    |
| B. — N                      | HODU                              | 0 11                             | 4.07         | 4,49             | 1,10                              | 1,10                  | 1,20                    |
|                             | HOLL                              | $C_{13}\Pi_{27}$                 | 4.07         | 4,40             | 4,04                              | 4.89                  | 0.40                    |
| н́                          | HOEt                              | $C_{15}H_{31}$                   | 5.07         | 4.88             | 4.91                              | 4.90                  | 5.51                    |
|                             | HOEt                              | C17H35                           | 6.07         | 5.04             | 4.99                              | 4.99                  | 5.77                    |
|                             | TOF                               | <u>с н</u>                       | 5 77         | 1 76             | 4.70                              | 4 77                  | 5 11                    |
|                             | noEt                              | C171133                          | 0.11         | 1,70             | 1.70                              | ±.11                  | 0.11                    |
|                             | HOEt                              | $C_{18}H_{35}$                   | 6.27         | 4.09             | 4.82                              | 4.64                  | 0.36                    |
|                             | HOEt                              | $C_{21}H_{43}$                   | 8.07         | 4.98             | 4.57                              | 4.29                  | 5.01                    |
|                             | HOEt                              | C <sub>er</sub> H <sub>2</sub> , | 10.07        | 3 15             | 2 97                              | 3 31                  | 3 60                    |
|                             | 110120                            | 0 11                             | 20.01        | 9,19<br>9,19     | 2.01                              | 0.01                  | 9.497                   |
|                             | н                                 | $C_{11}\Pi_{23}$                 | ə, əə        | 5.12             | <b>3</b> .00                      | 3.00                  | 0.40*                   |
|                             | Н                                 | $C_{17}H_{35}$                   | 6.55         | 4,31             | 4.41                              | 4.57                  | 5.21                    |
|                             | H <sub>2</sub> Nl£t               | $C_{17}H_{35}$                   | 6,07         | 4.84             | 4.74                              | 4.96                  | 5.40                    |
|                             | A11x1                             | C.H.                             | 7 75         | 4 83             | 4 54                              | 4 77                  | 5 31                    |
|                             | Allyl                             | 0171135                          | 0.7-         | ±.00             | 1,01                              | 1.11                  | 5.01                    |
|                             | Bu                                | $C_{17}H_{35}$                   | 8, 55        | 4.87             | 4.60                              | 4.67                  | o.20                    |
|                             | Hex                               | $C_{17}H_{35}$                   | 9.55         | 5.08             | 4.45                              | 4.34                  | 4.95                    |
|                             |                                   |                                  |              |                  |                                   |                       |                         |
|                             |                                   |                                  |              |                  |                                   | /Log                  | 1/C obsd <sup>e</sup> — |
| Ie                          | R                                 |                                  | Log P        | $\sigma^*$       | $K_{s}$                           | Eq 66                 | Eq 67                   |
| BrCH.CONHR                  | Pr                                |                                  | 0.84         | -0.12            | -0.36                             | 4.00                  | 3.40                    |
| Dienjeenin                  | A 1151                            |                                  | 0.54         | 0.12/            | -0.22/                            | 4 00                  | 3 40                    |
|                             | Allyi                             |                                  | 0.04         | 0.10             | -0.22                             | 4.00                  | 0,10                    |
|                             | <i>i</i> -Pr                      |                                  | 0.64         | -0.19            | -0.47                             | 3.40                  |                         |
|                             | <i>n</i> -Bu                      |                                  | 1.34         | -0.13            | -0.39                             | 4.10                  | 4.00                    |
|                             | $i_{-}Bu$                         |                                  | 1 14         | -0.13            | -0.93                             | 4 00                  | 3 40                    |
|                             | •- <b>D</b> u                     |                                  | 1 14         | 0.21             | _1 19                             | 2 10                  | 2 00                    |
|                             | sec-Bu                            |                                  | 1,14         | -0.21            | -1.13                             | <b>3.10</b>           | 3.00                    |
|                             | n-Am                              |                                  | 1.84         | -0.13'           | -0.40                             | 4.40                  |                         |
|                             | sec- $Am$                         |                                  | 1,64         | $-0.21^{\prime}$ | -1.55'                            | 3.40                  |                         |
|                             | Cyclober                          | /1                               | 1.85         | -0.15            | -0.79                             | 4 00                  | 3.40                    |
|                             | TT                                | •                                | 00<br>0 9/   | 0.19/            | 0.10                              | = 00                  | 1 10                    |
|                             | n-Hex                             |                                  | 4.04         | -0.13/           | -0.40/                            | 5.00                  | 4.10                    |
|                             | 2-(EtBu)                          |                                  | 2.14         | $-0.23^{f}$      | -1.74'                            | 3.70                  | 3.40                    |
|                             | n-Hep                             |                                  | 2.84         | -0.13'           | -0.40'                            | 5.00                  |                         |
|                             | n Oat                             |                                  | 3 34         | -0.13/           | -0.40                             | 5 00                  | 4 40                    |
|                             | <i>n</i> -Oct                     |                                  | 0.01<br>4.94 | 0.10             | 0.10                              | 4 70                  | 4 70                    |
|                             | n-Dec                             |                                  | 4,34         | $-0.13^{7}$      | -0.40                             | 4.70                  | 4.70                    |
|                             | n-C <sub>14</sub> H <sub>29</sub> |                                  | 6.34         | $-0.13^{f}$      | -0.40                             | 2.00                  |                         |
|                             |                                   |                                  |              |                  |                                   |                       |                         |
|                             |                                   |                                  | ,            |                  | Log $1/C \operatorname{obsd}^{g}$ |                       |                         |
| If                          | R                                 | $\log P$                         | Eq f         | B Eq.7           | Eq 8                              | Eq 49                 | Eq 50                   |
| RCOO-Na+                    | C <sub>12</sub> H <sub>27</sub>   | 1.80                             |              |                  |                                   |                       | 4.36                    |
|                             | ~ 10- 4 41                        |                                  |              |                  |                                   |                       |                         |

 TABLE I

 ANTIFUNGAL DATA AND PHYSICAL CONSTANTS USED IN THE REGRESSION ANALYSES

If

R

 $\mathrm{C}_{13}\mathrm{H}_{25}$ 

 $C_{12}H_{25}$ 

 $C_{12}H_{21}$ 

 $C_{11}H_{23}$ 

 $C_{11}H_{21}$ 

 $\begin{array}{c} C_{10}H_{21} \\ C_{10}H_{19} \\ C_{9}H_{19} \\ C_{8}H_{17} \\ C_{8}H_{15} \\ C_{7}H_{15} \\ C_{6}H_{13} \\ C_{5}H_{11} \\ C_{5}H_{9} \\ C_{2}H_{5} \end{array}$ 

Eq 49

3.45

3.86

3.76

Eq 50

4.36

4.16

4.00

-Log 1/C obsd<sup>g</sup>-Eq 8

Eq 7

3.36

3.33

3.02

3.13

TABLE I (Continued)

Log P

1.50

1.30

0.70

0.80

|   | Ig   |
|---|------|
| R | — он |

Ih

-ОН

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 3.00                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.82 | 4.12                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.09 | 2.57                                                                                                                                                                         | 2.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.57 | 3.79                                                                                                                                                                                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.09 | 2.49                                                                                                                                                                         | 2.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.66 | 3.96                                                                                                                                                                                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.94 | 2.12                                                                                                                                                                         | 2.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.36 | 3 , $54$                                                                                                                                                                                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                                                                                                                                                                              | 2.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.20 | 3.35                                                                                                                                                                                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.49 | 1.89                                                                                                                                                                         | 2.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.35 | 3.49                                                                                                                                                                                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,56 | 1.51                                                                                                                                                                         | 1.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.98 | 3.20                                                                                                                                                                                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00 | 1.21                                                                                                                                                                         | 1.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.64 | 2.82                                                                                                                                                                                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $-2.20^{ss}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.37 | 0.76                                                                                                                                                                         | 1.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.89 | 2.11                                                                                                                                                                                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.36 | 0.58                                                                                                                                                                         | 1.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.88 | 2.15                                                                                                                                                                                     |
| R         Log P         e         Log 1/C obsd <sup>4</sup> H         1.46**         0.00         2.35           4-Cl         2.39**         0.23         3.35           2-Me         1.96         -0.14         2.70           2-Me         2.02**         -0.07         2.68           3-Me-4-Cl         2.95         0.16         3.70           3-Me         2.64         -0.28         3.35           2,6-Me,         2.46         -0.28         3.35           2,6-Me,         2.46         -0.28         3.35           2,6-Me,         2.68         -0.14         3.26           3,5-Me,         2.58         -0.14         3.26           3,5-Me,         2.69         0.00         4.30           3.46-6-tert-Bu         3.67         -0.23         3.35           2-Pr+         2.76         -0.23         4.00           2-Cyclohex-4-Cl         4.90         0.00         4.40           2-Cyclohex-4-Cl         4.90         0.00         4.40           2-Cyclohex-4-Cl         4.90         0.00         4.40           2-Ph         3.55         0.00         4.10           2-Ph+4-Cl                                                                                                                                                                                                                                                   | -3.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | -0.53                                                                                                                                                                        | 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,17 | 1.39                                                                                                                                                                                     |
| R $\log P$ e $\log M$ $\log M$ H         1.46*         0.00         2.35           2-Me         1.96         -0.14         2.70           2-Me-4-Cl         2.89         0.09         3.70           3.Me         2.02*         -0.07         2.68           3-Me-4-Cl         2.95         0.16         3.70           3.6         5.5Me <sub>2</sub> 2.46         -0.28         3.35           2.6-Me <sub>2</sub> 2.6         3.39         -0.05         4.40           3.5-Me <sub>2</sub> 2.58         -0.14         3.26         3.35           2.6-Pr         2.76         -0.23*         3.35         2.4-Pr-4-Cl         3.69         0.00         4.30           3.Me-6-dert-Bu         3.70         -0.59         3.70         3.70         3.70         3.70           3.Me-6-dert-Bu         3.69         0.00         4.30         3.70         3.70         3.70           3.Me-6-dert-Bu         3.70         -0.23         3.70         3.70         3.70         3.70           2.Cyclohex         3.97         -0.23         4.00         3.70         3.70           2.Cyclohex         3.97<                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | Ton 1/C about                                                                                                                                                                            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | Log P                                                                                                                                                                        | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | Ea 54                                                                                                                                                                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 1 46**                                                                                                                                                                       | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 2 35                                                                                                                                                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4-Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 2 30**                                                                                                                                                                       | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 2.00                                                                                                                                                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 1 96                                                                                                                                                                         | -0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 2 70                                                                                                                                                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-Me-4-Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 2 80                                                                                                                                                                         | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 2.70                                                                                                                                                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 2.03                                                                                                                                                                         | -0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 0.70                                                                                                                                                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3  Mo  4  Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 2.02                                                                                                                                                                         | -0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 2.08                                                                                                                                                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.6 Mo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 2.90                                                                                                                                                                         | -0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 0.70                                                                                                                                                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2,0-1010_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 2.40                                                                                                                                                                         | -0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 3,39                                                                                                                                                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2,0-1/12^{-4}-0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 0.09                                                                                                                                                                         | -0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 4,40                                                                                                                                                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $3, 3-1/10_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 2.58                                                                                                                                                                         | -0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 3.26                                                                                                                                                                                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $3,5-Me_2-4-Cl$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 3.51                                                                                                                                                                         | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 4.22                                                                                                                                                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2- <i>i</i> -Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 2.76                                                                                                                                                                         | $-0.23^{i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 3.35                                                                                                                                                                                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2- <i>i</i> -Pr-4-Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 3.69                                                                                                                                                                         | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 4.30                                                                                                                                                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3-Me-6-tert-Bu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 3.70                                                                                                                                                                         | -0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 3.70                                                                                                                                                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3-Me-4-Cl-6-tert-Bu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 4.63                                                                                                                                                                         | -0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 4,30                                                                                                                                                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-Cyclohex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 3.97                                                                                                                                                                         | -0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 4.00                                                                                                                                                                                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2-Cyclohex-4-Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 4.90                                                                                                                                                                         | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 4.40                                                                                                                                                                                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2-Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 3,59                                                                                                                                                                         | 0,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 4.10                                                                                                                                                                                     |
| RLog PrLog 1/C obsd?<br>Eq 29H1.46"0.002.352-Cl2.15"0.21'2.854-Me1.94" $-0.17$ 2.744-Me-2-Cl2.630.043.072-Me1.96 $-0.14'$ 2.746-Cl-2-Me2.650.072.774-i-Pr2.86 $-0.15$ 3.352-Cl-4-i-Pr2.76 $-0.23^{m}$ 3.302-cl-4-i-Pr2.76 $-0.23^{m}$ 3.302-cl-4-ier-Bu3.830.013.522-Cl-4-ier-Bu3.830.013.524-Cy-H <sub>19</sub> 5.94 $-0.16'$ 4.142-Cl-4-Cy-H <sub>19</sub> 6.650.053.824-Ph3.590.01^n4.002-Cl-4-Ph4.280.224.002-Cl-4-Ph4.280.224.002-Cl-4-Ph3.590.014.106-Cl-2-Ph4.670.063.853,5-Me22.46 $-0.15^{s}$ 4.006-Cl-2-Cyclohex3.64 $-0.34$ 3.456-tert-Bu-3-Me3.64 $-0.39^{s}$ 3.642-tert-Bu-2-Me3.64 $-0.38^{m}$ 3.662-tert-Bu-4-Me3.64 $-0.38^{m}$ 3.662-tert-Bu-2-Me <sup>k</sup> $-0.30^{r}$ $4.05$ 6-Cl-2-i-Pr $-0.30^{r}$ $4.05$ 6-Cl-2-i-Pr $-0.30^{r}$ $-0.30^{r}$ 6-Cl-2-i-Pr $-0.30^{r}$ $-0.30^{r}$ 6-Cl-2-i-Pr $-0.30^{r}$ $-0.30^{r}$ 6-Cl-2-i-Pr $-0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-Ph-4-Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 4.52                                                                                                                                                                         | 0,23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 4.52                                                                                                                                                                                     |
| R $\log P$ $\sigma$ $Eq 29$ H         1.46**         0.00         2.35           2-Cl         2.15**         0.21 <sup>i</sup> 2.85           4-Me         1.94** $-0.17$ 2.74           4-Me-2-Cl         2.63         0.04         3.07           2-Me         1.96 $-0.14^i$ 2.74           6-Cl-2-Me         2.65         0.07         2.77           4- <i>i</i> -Pr         2.86 $-0.15$ 3.35           2-Cl-4. <i>i</i> -Pr         3.55         0.06         3.40           2- <i>c</i> l-4 <i>i</i> - <i>i</i> -Pr         2.76 $-0.23^m$ 3.30           4- <i>t</i> ert-Bu         3.14 $-0.20$ 3.46           2-Cl-4- <i>t</i> ert-Bu         3.83         0.01         3.52           4-C <sub>9</sub> H <sub>19</sub> 5.94 $-0.16^i$ 4.14           2-Cl-4- <i>c</i> <sub>9</sub> H <sub>19</sub> 6.65         0.05         3.82           4-Ph         3.59         0.01 <sup>n</sup> 4.00           2-Cl-4- <i>b</i> rh         4.28         0.22         4.00           2-Cl-4-brh         3.59         0.01         4.10           6-Cl-2-Cyclohex         3.97 $-0.15^o$ <                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | $\log 1/C$ obsd $^i$                                                                                                                                                                     |
| H $1.46^{**}$ $0.00$ $2.35$ 2-Cl $2.15^{**}$ $0.21^i$ $2.85$ $4$ -Me $1.94^{**}$ $-0.17$ $2.74$ $4$ -Me-2-Cl $2.63$ $0.04$ $3.07$ $2$ -Me $1.96$ $-0.14^i$ $2.74$ $6$ -Cl-2-Me $2.65$ $0.07$ $2.77$ $4.i$ -Pr $2.86$ $-0.15$ $3.35$ $2$ -Cl- $4.i$ -Pr $2.76$ $-0.23^{**}$ $3.30$ $2$ -cl- $4.i$ -Pr $2.76$ $-0.23^{**}$ $3.30$ $4$ -tert-Bu $3.14$ $-0.20$ $3.46$ $2$ -Cl- $4$ -tert-Bu $3.83$ $0.01$ $3.52$ $4$ -Cl- $4$ -tert-Bu $3.83$ $0.01$ $3.52$ $4$ -Cl- $4$ -tert-Bu $3.59$ $0.01^*$ $4.00$ $2$ -Cl- $4$ -Cl- $4$ -lert- $6$ H <sub>19</sub> $6.65$ $0.05$ $3.82$ $4$ -Ph $3.59$ $0.01^*$ $4.00$ $2$ -Cl- $4$ -Cl- $4$ -Ph $3.59$ $0.01^*$ $4.00$ $2$ -Cl- $4$ -Ph $3.59$ $0.01^*$ $4.00$ $2$ -Cl- $4$ -Ph $3.59$ $0.01^*$ $4.00$ $2$ -Cl- $4$ -Ph $3.59$ $0.01$ $4.10$ $2$ -Cl- $4$ -Ph $3.59$ $0.01$ $4.10$ $2$ -Cl- $4$ -Ph $3.59$ $0.01$ $4.10$ $2$ -Cl- $4$ -Ph $3.59$ $0.01^*$ $4.00$ $2$ -Cl- $4$ -Ph $3.64$ $-0.38^*$ $3.85$ $3,5$ -                                                                                                                                                                                                                                                                            | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | $\operatorname{Log} P$                                                                                                                                                       | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | Eq 29                                                                                                                                                                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 1.46**                                                                                                                                                                       | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 2.35                                                                                                                                                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 2.15                                                                                                                                                                         | $0.21^{i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 2.85                                                                                                                                                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4-Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 1,94**                                                                                                                                                                       | -0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 2.74                                                                                                                                                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4-Me-2-Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 2.63                                                                                                                                                                         | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 3.07                                                                                                                                                                                     |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 1.96                                                                                                                                                                         | $-0.14^{i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 2.74                                                                                                                                                                                     |
| $4-i.\Pr$ $2.86$ $-0.15$ $3.35$ $2-Cl-4-i-\Pr$ $3.55$ $0.06$ $3.40$ $2-i\Pr$ $2.76$ $-0.23^m$ $3.30$ $4-tert-Bu$ $3.14$ $-0.20$ $3.46$ $2-Cl-4-tert-Bu$ $3.83$ $0.01$ $3.52$ $4-C_9H_{19}$ $5.94$ $-0.167$ $4.14$ $2-Cl-4-C_9H_{19}$ $6.65$ $0.05$ $3.82$ $4-Ph$ $3.59$ $0.01^n$ $4.00$ $2-Cl-4-Ph$ $4.28$ $0.22$ $4.00$ $2-Ph$ $3.59$ $0.01$ $4.10$ $6-Cl-2-Ph$ $4.28$ $0.22$ $4.00$ $2-Ph$ $3.59$ $0.01$ $4.10$ $6-Cl-2-Qclohex$ $3.97$ $-0.15^o$ $4.00$ $2-Cyclohex$ $3.97$ $-0.15^o$ $4.00$ $6-Cl-2-Cyclohex$ $4.67$ $0.06$ $3.85$ $3,5-Me_2$ $2.46$ $-0.14$ $3.26$ $2-Cl-3,5-Me_2$ $3.15$ $0.07$ $3.35$ $4-tert-Bu-3-Me$ $3.64$ $-0.38^m$ $3.66$ $2-4ert-Bu-3-Me$ $3.64$ $-0.38^m$ $3.66$ $2-4-Am_2$ $6.46$ $-0.30^o$ $4.05$ $6-Cl-2-i-Pr$ $6-Cl-2-iert-Bu-3-Me^k$ $2-Cl-6-tert-Bu-3-Me^k$ $2-Cl-6-tert-Bu-3-Me^k$ $6-Cl-2-tert-Bu-3-Me^k$ $4.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6-Cl-2-Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 2.65                                                                                                                                                                         | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 2.77                                                                                                                                                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                                                                                                                                                                              | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                                                                                                                                                                                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4- <i>i</i> -Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 2.86                                                                                                                                                                         | -0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 3.35                                                                                                                                                                                     |
| $4-tert$ -Bu $3.14$ $-0.20$ $3.46$ $2-\text{Cl-}4-tert$ -Bu $3.83$ $0.01$ $3.52$ $4-\text{C}_9\text{H}_{19}$ $5.94$ $-0.16/$ $4.14$ $2-\text{Cl-}4-\text{C}_9\text{H}_{19}$ $6.65$ $0.05$ $3.82$ $4-\text{Ph}$ $3.59$ $0.01^n$ $4.00$ $2-\text{Cl-}4-\text{Ph}$ $4.28$ $0.22$ $4.00$ $2-\text{Ph}$ $3.59$ $0.01$ $4.10$ $6-\text{Cl-}2-\text{Ph}$ $4.28$ $0.22$ $4.00$ $2-\text{Cyclohex}$ $3.97$ $-0.15^\circ$ $4.00$ $2-\text{Cyclohex}$ $3.97$ $-0.15^\circ$ $4.00$ $6-\text{Cl-}2-\text{Cyclohex}$ $4.67$ $0.06$ $3.85$ $3,5-\text{Me}_2$ $2.46$ $-0.14$ $3.26$ $2-\text{Cl}-3,5-\text{Me}_2$ $3.15$ $0.07$ $3.35$ $4-tert-\text{Bu-}2-\text{Me}$ $3.64$ $-0.59^{p}$ $3.64$ $2-\text{cl-}3,5-\text{Me}_2$ $3.64$ $-0.38^m$ $3.66$ $2-\text{cl-}3,5-\text{Me}_2$ $3.64$ $-0.39^{p}$ $3.64$ $2-\text{Cl-}3,5-\text{Me}_2$ $3.64$ $-0.38^m$ $3.66$ $2-\text{cl-}3,5-\text{Me}_2$ $3.64$ $-0.39^{p}$ $3.64$ $2-\text{cl-}3,5-\text{Me}_2$ $3.64$ $-0.38^m$ $3.66$ $2-\text{cl-}3,5-\text{Me}_2$ $4.06$ $-0.38^m$ $3.66$ $2-\text{tert-Bu-}4-\text{Me}$ $6.46$ $-0.30^r$ $4.05$ $6-\text{cl-}2-i-\text{Pr}$ $6-\text{cl-}2-i-\text{Pr}$ $6-\text{cl-}2-i-\text{Pr}$ $6-\text{cl-}2-i-\text{Pr}$ $6-\text{cl-}2-i-\text{Pr}$ $6-\text{cl-}2-i-\text{Pr}$ $6-\text{cl-}2-i-\text{Pr}$ $6-\text{cl-}2-i-\text{Pr}$ $6-\text{cl-}2-i-\text{Pr}$ $6-\text{cl-}$ | 4- <i>i</i> -Pr<br>2-Cl-4- <i>i</i> -Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 2.86<br>3.55                                                                                                                                                                 | -0.15<br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | $3.35 \\ 3.40$                                                                                                                                                                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4- <i>i</i> -Pr<br>2-Cl-4- <i>i</i> -Pr<br>2- <i>i</i> -Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 2.86<br>3.55<br>2.76                                                                                                                                                         | -0.15<br>0.06<br>$-0.23^{m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 3.35<br>3.40<br>3.30                                                                                                                                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4- <i>i</i> -Pr<br>2-Cl-4- <i>i</i> -Pr<br>2- <i>i</i> -Pr<br>4- <i>tert</i> -Bu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 2.86<br>3.55<br>2.76<br>3.14                                                                                                                                                 | $ \begin{array}{r} -0.15 \\ 0.06 \\ -0.23^{m} \\ -0.20 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 3.35<br>3.40<br>3.30<br>3.46                                                                                                                                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4- <i>i</i> -Pr<br>2-Cl-4- <i>i</i> -Pr<br>2- <i>i</i> -Pr<br>4- <i>tert</i> -Bu<br>2-Cl-4- <i>tert</i> -Bu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 2.86<br>3.55<br>2.76<br>3.14<br>3.83                                                                                                                                         | $ \begin{array}{r} -0.15 \\ 0.06 \\ -0.23^{m} \\ -0.20 \\ 0.01 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | $\begin{array}{c} 3.35\\ 3.40\\ 3.30\\ 3.46\\ 3.52 \end{array}$                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4- <i>i</i> -Pr<br>2-Cl-4- <i>i</i> -Pr<br>2- <i>i</i> -Pr<br>4- <i>tert</i> -Bu<br>2-Cl-4- <i>tert</i> -Bu<br>4-C <sub>9</sub> H <sub>19</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 2.86<br>3.55<br>2.76<br>3.14<br>3.83<br>5.94                                                                                                                                 | $ \begin{array}{r} -0.15 \\ 0.06 \\ -0.23^{m} \\ -0.20 \\ 0.01 \\ -0.16^{\prime} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | $\begin{array}{c} 3.35 \\ 3.40 \\ 3.30 \\ 3.46 \\ 3.52 \\ 4.14 \end{array}$                                                                                                              |
| 4-11 $3.39$ $0.01^{n}$ $4.00$ 2-Cl-4-Ph $4.28$ $0.22$ $4.00$ 2-Ph $3.59$ $0.01$ $4.10$ 6-Cl-2-Ph $4.28$ $0.22$ $4.00$ 2-Cyclohex $3.97$ $-0.15^{o}$ $4.00$ 6-Cl-2-Cyclohex $4.67$ $0.06$ $3.85$ $3,5-Me_2$ $2.46$ $-0.14$ $3.26$ 2-Cl-3,5-Me_2 $3.15$ $0.07$ $3.35$ 4-tert-Bu-2-Me $3.64$ $-0.34$ $3.45$ 6-tert-Bu-3-Me $3.64$ $-0.69^{a}$ $3.82$ $2,4-i-Pr_2$ $4.06$ $-0.38^{m}$ $3.66$ $2,4-i-Pr_2$ $4.06$ $-0.30^{r}$ $4.05$ 6-Cl-2-i-Pr $6.46$ $-0.30^{r}$ $4.05$ 6-Cl-2-i-Pr $6.46$ $-0.30^{r}$ $4.05$ 6-Cl-2-tert-Bu-3-Me^k $2-Cl-6-tert-Bu-3-Me^k$ $6.46$ $-0.30^{r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4- <i>i</i> -Pr<br>2-Cl-4- <i>i</i> -Pr<br>2- <i>i</i> -Pr<br>4- <i>tert</i> -Bu<br>2-Cl-4- <i>tert</i> -Bu<br>4-C <sub>9</sub> H <sub>19</sub><br>2-Cl-4-C <sub>9</sub> H <sub>19</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 2.86<br>3.55<br>2.76<br>3.14<br>3.83<br>5.94<br>6.65                                                                                                                         | $ \begin{array}{r} -0.15 \\ 0.06 \\ -0.23^{m} \\ -0.20 \\ 0.01 \\ -0.16' \\ 0.05 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | $\begin{array}{c} 3.35\\ 3.40\\ 3.30\\ 3.46\\ 3.52\\ 4.14\\ 3.82 \end{array}$                                                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4- <i>i</i> -Pr<br>2-Cl-4- <i>i</i> -Pr<br>2- <i>i</i> -Pr<br>4- <i>tert</i> -Bu<br>2-Cl-4- <i>tert</i> -Bu<br>4-C <sub>9</sub> H <sub>19</sub><br>2-Cl-4-C <sub>9</sub> H <sub>19</sub><br>4-Pb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 2.86<br>3.55<br>2.76<br>3.14<br>3.83<br>5.94<br>6.65                                                                                                                         | $ \begin{array}{c} -0.15 \\ 0.06 \\ -0.23^{m} \\ -0.20 \\ 0.01 \\ -0.16' \\ 0.05 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 3.35<br>3.40<br>3.30<br>3.46<br>3.52<br>4.14<br>3.82                                                                                                                                     |
| 2-Fit $3.59$ $0.01$ $4.10$ 6-Cl-2-Ph $4.28$ $0.22$ $4.00$ 2-Cyclohex $3.97$ $-0.15^{\circ}$ $4.00$ 6-Cl-2-Cyclohex $4.67$ $0.06$ $3.85$ $3,5-Me_2$ $2.46$ $-0.14$ $3.26$ 2-Cl-3,5-Me_2 $3.15$ $0.07$ $3.35$ 4-tert-Bu-2-Me $3.64$ $-0.34$ $3.45$ 6-tert-Bu-3-Me $3.64$ $-0.59p$ $3.64$ 2-tert-Bu-4-Me $3.64$ $-0.69q$ $3.82$ $2,4-i-Pr_2$ $4.06$ $-0.38^m$ $3.66$ $2,4-Am_2$ $6.46$ $-0.30r$ $4.05$ 6-Cl-2-i-Pr $6-Cl-2-tert-Bu-3-Me^k$ $-0.30r$ $4.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4- <i>i</i> -Pr<br>2-Cl-4- <i>i</i> -Pr<br>2- <i>i</i> -Pr<br>4- <i>tert</i> -Bu<br>2-Cl-4- <i>tert</i> -Bu<br>4-C <sub>9</sub> H <sub>19</sub><br>2-Cl-4-C <sub>9</sub> H <sub>19</sub><br>4-Ph<br>2-Cl 4-Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 2.86<br>3.55<br>2.76<br>3.14<br>3.83<br>5.94<br>6.65<br>3.59                                                                                                                 | $ \begin{array}{c} -0.15 \\ 0.06 \\ -0.23^{m} \\ -0.20 \\ 0.01 \\ -0.16' \\ 0.05 \\ 0.01^{n} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | $\begin{array}{c} 3.35\\ 3.40\\ 3.30\\ 3.46\\ 3.52\\ 4.14\\ 3.82\\ 4.00\\ 4.00\\ 4.00\end{array}$                                                                                        |
| 0-C12-FI $4.28$ $0.22$ $4.00$ 2-Cyclohex $3.97$ $-0.15^{\circ}$ $4.00$ 6-Cl-2-Cyclohex $4.67$ $0.06$ $3.85$ $3,5-Me_2$ $2.46$ $-0.14$ $3.26$ 2-Cl-3,5-Me_2 $3.15$ $0.07$ $3.35$ 4-tert-Bu-2-Me $3.64$ $-0.34$ $3.45$ 6-tert-Bu-3-Me $3.64$ $-0.59p$ $3.64$ 2-tert-Bu-4-Me $3.64$ $-0.69q$ $3.82$ $2,4-i-Pr_2$ $4.06$ $-0.38^m$ $3.66$ $2,4-i-Pr_2$ $4.06$ $-0.30^r$ $4.05$ 6-Cl-2-i-Pr $6.46$ $-0.30^r$ $4.05$ 6-Cl-2-i-Pr $6-Cl-2-iert-Bu-3-Me^k$ $6-Cl-2-iert-Bu-4-Me^k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4- <i>i</i> -Pr<br>2-Cl-4- <i>i</i> -Pr<br>2- <i>i</i> -Pr<br>4- <i>tert</i> -Bu<br>2-Cl-4- <i>tert</i> -Bu<br>4-C <sub>9</sub> H <sub>19</sub><br>2-Cl-4-C <sub>9</sub> H <sub>19</sub><br>4-Ph<br>2-Cl-4-Ph<br>2-Rh                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 2.86<br>3.55<br>2.76<br>3.14<br>3.83<br>5.94<br>6.65<br>3.59<br>4.28<br>2.70                                                                                                 | $ \begin{array}{c} 0.07 \\ -0.15 \\ 0.06 \\ -0.23^{m} \\ -0.20 \\ 0.01 \\ -0.16' \\ 0.05 \\ 0.01^{n} \\ 0.22 \\ 0.01 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | $\begin{array}{c} 3.35\\ 3.40\\ 3.30\\ 3.46\\ 3.52\\ 4.14\\ 3.82\\ 4.00\\ 4.00\\ 4.00\\ 10\end{array}$                                                                                   |
| 2-Cyclonex $3.97$ $-0.15^o$ $4.00$ 6-Cl-2-Cyclohex $4.67$ $0.06$ $3.85$ $3,5-Me_2$ $2.46$ $-0.14$ $3.26$ $2-Cl-3,5-Me_2$ $3.15$ $0.07$ $3.35$ $4-tert-Bu-2-Me$ $3.64$ $-0.34$ $3.45$ $6-tert-Bu-3-Me$ $3.64$ $-0.59p$ $3.64$ $2-tert-Bu-4-Me$ $3.64$ $-0.69q$ $3.82$ $2,4-i-Pr_2$ $4.06$ $-0.38^m$ $3.66$ $2,4-Am_2$ $6.46$ $-0.30r$ $4.05$ $6-Cl-2-i-Pr$ $6-Cl-2-tert-Bu-3-Me^k$ $6-Cl-2-tert-Bu-3-Me^k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4- <i>i</i> -Pr<br>2-Cl-4- <i>i</i> -Pr<br>2- <i>i</i> -Pr<br>4- <i>tert</i> -Bu<br>2-Cl-4- <i>tert</i> -Bu<br>4-C <sub>9</sub> H <sub>19</sub><br>2-Cl-4-C <sub>9</sub> H <sub>19</sub><br>4-Ph<br>2-Cl-4-Ph<br>2-Ph<br>6-Cl 2-Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 2.86<br>3.55<br>2.76<br>3.14<br>3.83<br>5.94<br>6.65<br>3.59<br>4.28<br>3.59<br>4.28                                                                                         | $ \begin{array}{c} 0.07 \\ -0.15 \\ 0.06 \\ -0.23^{m} \\ -0.20 \\ 0.01 \\ -0.16' \\ 0.05 \\ 0.01^{n} \\ 0.22 \\ 0.01 \\ 0.22 \\ 0.01 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | $\begin{array}{c} 3.35\\ 3.40\\ 3.30\\ 3.46\\ 3.52\\ 4.14\\ 3.82\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\end{array}$                                                                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4- <i>i</i> -Pr<br>2-Cl-4- <i>i</i> -Pr<br>2- <i>i</i> -Pr<br>4- <i>tert</i> -Bu<br>2-Cl-4- <i>tert</i> -Bu<br>4-C <sub>9</sub> H <sub>19</sub><br>2-Cl-4-C <sub>9</sub> H <sub>19</sub><br>4-Ph<br>2-Cl-4-Ph<br>2-Ph<br>6-Cl-2-Ph<br>2-Culabor                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 2.86<br>3.55<br>2.76<br>3.14<br>3.83<br>5.94<br>6.65<br>3.59<br>4.28<br>3.59<br>4.28<br>3.59                                                                                 | $ \begin{array}{c} -0.15 \\ 0.06 \\ -0.23^{m} \\ -0.20 \\ 0.01 \\ -0.16' \\ 0.05 \\ 0.01^{n} \\ 0.22 \\ 0.01 \\ 0.22 \\ 0.01 \\ 0.22 \\ 0.01 \\ 0.22 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.$ |      | $\begin{array}{c} 3.35\\ 3.40\\ 3.30\\ 3.46\\ 3.52\\ 4.14\\ 3.82\\ 4.00\\ 4.00\\ 4.00\\ 4.10\\ 4.00\\ 4.00\\ \end{array}$                                                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4- <i>i</i> -Pr<br>2-Cl-4- <i>i</i> -Pr<br>2- <i>i</i> -Pr<br>4- <i>tert</i> -Bu<br>2-Cl-4- <i>tert</i> -Bu<br>4-C <sub>9</sub> H <sub>19</sub><br>2-Cl-4-C <sub>9</sub> H <sub>19</sub><br>4-Ph<br>2-Cl-4-Ph<br>2-Ph<br>6-Cl-2-Ph<br>2-Cyclohex<br>6-Cl-2-Qualcher                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 2.86<br>3.55<br>2.76<br>3.14<br>3.83<br>5.94<br>6.65<br>3.59<br>4.28<br>3.59<br>4.28<br>3.59<br>4.28<br>3.59                                                                 | $\begin{array}{c} 0.07\\ -0.15\\ 0.06\\ -0.23^{m}\\ -0.20\\ 0.01\\ -0.16^{\prime}\\ 0.05\\ 0.01^{n}\\ 0.22\\ 0.01\\ 0.22\\ -0.15^{o}\\ 0.06\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | $\begin{array}{c} 3.35\\ 3.40\\ 3.30\\ 3.46\\ 3.52\\ 4.14\\ 3.82\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 2.85\end{array}$                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4- <i>i</i> -Pr<br>2-Cl-4- <i>i</i> -Pr<br>2- <i>i</i> -Pr<br>4- <i>tert</i> -Bu<br>2-Cl-4- <i>tert</i> -Bu<br>4-C <sub>9</sub> H <sub>19</sub><br>2-Cl-4-C <sub>9</sub> H <sub>19</sub><br>4-Ph<br>2-Cl-4-Ph<br>2-Ph<br>6-Cl-2-Ph<br>2-Cyclohex<br>6-Cl-2-Cyclohex                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 2.86<br>3.55<br>2.76<br>3.14<br>3.83<br>5.94<br>6.65<br>3.59<br>4.28<br>3.59<br>4.28<br>3.97<br>4.67                                                                         | $\begin{array}{c} -0.17 \\ -0.15 \\ 0.06 \\ -0.23^{m} \\ -0.20 \\ 0.01 \\ -0.16^{\prime} \\ 0.05 \\ 0.01^{n} \\ 0.22 \\ 0.01 \\ 0.22 \\ -0.15^{o} \\ 0.06 \\ 0.16 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | $\begin{array}{c} 3.35\\ 3.40\\ 3.30\\ 3.46\\ 3.52\\ 4.14\\ 3.82\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 3.85\\ 2.22\end{array}$                                                     |
| $a - b - b - 2 - Me$ $a - 0 - 34$ $a - 3 - 45$ $b - tert - Bu - 3 - Me$ $a - 0 - 59r$ $a - 64$ $2 - tert - Bu - 4 - Me$ $a - 0 - 59r$ $a - 64$ $2 - tert - Bu - 4 - Me$ $a - 0 - 69q$ $a - 82$ $2 - tert - Bu - 4 - Me$ $a - 0 - 69q$ $a - 82$ $2 - 4 - Am_2$ $a - 0 - 38m$ $a - 66$ $a - 0 - 38m$ $a - 0 - 38m$ $a - 66$ $a - 0 - 30r$ $4 - 05$ $a - 0 - 30r$ $a - 0 - 1 - 4 - 4r - 1 - 8u - 2 - Me^k$ $a - 0 - 30r$ $a - 0 - 30r$ $a - 0 - 1 - 4 - 4r - 1 - 8u - 2 - Me^k$ $a - 0 - 30r$ $a - 0 - 30r$ $a - 0 - 1 - 4 - 4r - 1 - 8u - 3 - Me^k$ $a - 0 - 30r$ $a - 0 - 30r$ $a - 0 - 1 - 4 - 4r - 1 - 8u - 3 - Me^k$ $a - 0 - 30r$ $a - 0 - 30r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4- <i>i</i> -Pr<br>2-Cl-4- <i>i</i> -Pr<br>2- <i>i</i> -Pr<br>4- <i>tert</i> -Bu<br>2-Cl-4- <i>tert</i> -Bu<br>4-C <sub>9</sub> H <sub>19</sub><br>2-Cl-4-C <sub>9</sub> H <sub>19</sub><br>4-Ph<br>2-Cl-4-Ph<br>2-Ph<br>6-Cl-2-Ph<br>2-Cyclohex<br>6-Cl-2-Cyclohex<br>3,5-Me <sub>2</sub><br>2-Cl 3-5 Me                                                                                                                                                                                                                                                                                                                                                                                 |      | 2.86<br>3.55<br>2.76<br>3.14<br>3.83<br>5.94<br>6.65<br>3.59<br>4.28<br>3.59<br>4.28<br>3.59<br>4.28<br>3.97<br>4.67<br>2.46                                                 | $\begin{array}{c} -0.17\\ -0.15\\ 0.06\\ -0.23^{m}\\ -0.20\\ 0.01\\ -0.16^{\prime}\\ 0.05\\ 0.01^{n}\\ 0.22\\ 0.01\\ 0.22\\ -0.15^{o}\\ 0.06\\ -0.14\\ 0.27\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | $\begin{array}{c} 3.35\\ 3.40\\ 3.30\\ 3.46\\ 3.52\\ 4.14\\ 3.82\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 3.85\\ 3.26\\ 2.27\end{array}$                                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4- <i>i</i> -Pr<br>2-Cl-4- <i>i</i> -Pr<br>2- <i>i</i> -Pr<br>4- <i>tert</i> -Bu<br>2-Cl-4- <i>tert</i> -Bu<br>4-C <sub>9</sub> H <sub>19</sub><br>2-Cl-4-C <sub>9</sub> H <sub>19</sub><br>4-Ph<br>2-Cl-4-Ph<br>2-Ph<br>6-Cl-2-Ph<br>2-Cyclohex<br>6-Cl-2-Cyclohex<br>3,5-Me <sub>2</sub><br>2-Cl-3,5-Me <sub>2</sub><br>4- <i>tert</i> -Bu 2-Ma                                                                                                                                                                                                                                                                                                                                         |      | 2.86<br>3.55<br>2.76<br>3.14<br>3.83<br>5.94<br>6.65<br>3.59<br>4.28<br>3.59<br>4.28<br>3.59<br>4.28<br>3.97<br>4.67<br>2.46<br>3.15<br>2.64                                 | $\begin{array}{c} -0.17\\ -0.15\\ 0.06\\ -0.23^{m}\\ -0.20\\ 0.01\\ -0.16^{\prime}\\ 0.05\\ 0.01^{n}\\ 0.22\\ 0.01\\ 0.22\\ -0.15^{o}\\ 0.06\\ -0.14\\ 0.07\\ 0.24\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | $\begin{array}{c} 3.35\\ 3.40\\ 3.30\\ 3.46\\ 3.52\\ 4.14\\ 3.82\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 3.85\\ 3.26\\ 3.35\\ 3.45\end{array}$                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4- <i>i</i> -Pr<br>2-Cl-4- <i>i</i> -Pr<br>2- <i>i</i> -Pr<br>4- <i>tert</i> -Bu<br>2-Cl-4- <i>tert</i> -Bu<br>4-C <sub>9</sub> H <sub>19</sub><br>2-Cl-4-C <sub>9</sub> H <sub>19</sub><br>4-Ph<br>2-Cl-4-Ph<br>2-Ph<br>6-Cl-2-Ph<br>2-Cyclohex<br>6-Cl-2-Cyclohex<br>3,5-Me <sub>2</sub><br>2-Cl-3,5-Me <sub>2</sub><br>4- <i>tert</i> -Bu 2-Me<br>6- <i>tert</i> -Bu 3-Me                                                                                                                                                                                                                                                                                                              |      | 2.86<br>3.55<br>2.76<br>3.14<br>3.83<br>5.94<br>6.65<br>3.59<br>4.28<br>3.59<br>4.28<br>3.59<br>4.28<br>3.97<br>4.67<br>2.46<br>3.15<br>3.64<br>2.64                         | $\begin{array}{c} -0.17\\ -0.15\\ 0.06\\ -0.23^{m}\\ -0.20\\ 0.01\\ -0.16^{\prime}\\ 0.05\\ 0.01^{n}\\ 0.22\\ 0.01\\ 0.22\\ -0.15^{o}\\ 0.06\\ -0.14\\ 0.07\\ -0.34\\ 0.707\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | $\begin{array}{c} 3.35\\ 3.40\\ 3.30\\ 3.46\\ 3.52\\ 4.14\\ 3.82\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 3.85\\ 3.26\\ 3.35\\ 3.45\\ 3.45\\ 2.44\end{array}$                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4- <i>i</i> -Pr<br>2-Cl-4- <i>i</i> -Pr<br>2- <i>i</i> -Pr<br>4- <i>tert</i> -Bu<br>2-Cl-4- <i>tert</i> -Bu<br>4-C <sub>9</sub> H <sub>19</sub><br>2-Cl-4-C <sub>9</sub> H <sub>19</sub><br>4-Ph<br>2-Cl-4-Ph<br>2-Cl-4-Ph<br>2-Ph<br>6-Cl-2-Ph<br>2-Cyclohex<br>6-Cl-2-Cyclohex<br>3,5-Me <sub>2</sub><br>2-Cl-3,5-Me <sub>2</sub><br>4- <i>tert</i> -Bu-2-Me<br>6- <i>tert</i> -Bu-3-Me<br>2- <i>tert</i> -Bu-4-Me                                                                                                                                                                                                                                                                      |      | 2.86<br>3.55<br>2.76<br>3.14<br>3.83<br>5.94<br>6.65<br>3.59<br>4.28<br>3.59<br>4.28<br>3.59<br>4.28<br>3.97<br>4.67<br>2.46<br>3.15<br>3.64<br>3.64                         | $\begin{array}{c} -0.17\\ -0.15\\ 0.06\\ -0.23^{m}\\ -0.20\\ 0.01\\ -0.16^{\prime}\\ 0.05\\ 0.01^{n}\\ 0.22\\ 0.01\\ 0.22\\ -0.15^{o}\\ 0.06\\ -0.14\\ 0.07\\ -0.34\\ -0.59^{p}\\ -0.69^{a}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | $\begin{array}{c} 3.35\\ 3.40\\ 3.30\\ 3.46\\ 3.52\\ 4.14\\ 3.82\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 3.85\\ 3.26\\ 3.35\\ 3.45\\ 3.64\\ 2.82\end{array}$                         |
| 2, ramz 0.40 -0.50 <sup>o</sup> 4.05<br>6-Cl-2- <i>i</i> -Pr<br>6-Cl-4- <i>tert</i> -Bu-2-Me <sup>k</sup><br>6-Cl-2- <i>tert</i> -Bu-3-Me <sup>k</sup><br>6-Cl-2- <i>tert</i> -Bu-4-Me <sup>k</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4- <i>i</i> -Pr<br>2-Cl-4- <i>i</i> -Pr<br>2- <i>i</i> -Pr<br>4- <i>tert</i> -Bu<br>2-Cl-4- <i>tert</i> -Bu<br>4-C <sub>9</sub> H <sub>19</sub><br>2-Cl-4-C <sub>9</sub> H <sub>19</sub><br>2-Cl-4-C <sub>9</sub> H <sub>19</sub><br>4-Ph<br>2-Cl-4-Ph<br>2-Cl-4-Ph<br>2-Cl-2-Ph<br>2-Cyclohex<br>6-Cl-2-Ph<br>2-Cyclohex<br>3,5-Me <sub>2</sub><br>2-Cl-3,5-Me <sub>2</sub><br>4- <i>tert</i> -Bu-2-Me<br>6- <i>tert</i> -Bu-3-Me<br>2- <i>tert</i> -Bu-4-Me<br>2- <i>tert</i> -Bu-4-Me                                                                                                                                                                                                  |      | 2.86<br>3.55<br>2.76<br>3.14<br>3.83<br>5.94<br>6.65<br>3.59<br>4.28<br>3.59<br>4.28<br>3.59<br>4.28<br>3.97<br>4.67<br>2.46<br>3.15<br>3.64<br>3.64<br>4.06                 | $\begin{array}{c} 0.07\\ -0.15\\ 0.06\\ -0.23^{m}\\ -0.20\\ 0.01\\ -0.16^{f}\\ 0.05\\ 0.01^{n}\\ 0.22\\ 0.01\\ 0.22\\ -0.15^{o}\\ 0.06\\ -0.14\\ 0.07\\ -0.34\\ -0.59^{p}\\ -0.69^{q}\\ -0.28^{m}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | $\begin{array}{c} 3.35\\ 3.40\\ 3.30\\ 3.46\\ 3.52\\ 4.14\\ 3.82\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 3.85\\ 3.26\\ 3.35\\ 3.26\\ 3.35\\ 3.45\\ 3.64\\ 3.82\\ 2.66\end{array}$    |
| 6-Cl-4-tert-Bu-2-Me <sup>k</sup><br>2-Cl-6-tert-Bu-3-Me <sup>k</sup><br>6-Cl-2-tert-Bu-4-Me <sup>k</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4- <i>i</i> -Pr<br>2-Cl-4- <i>i</i> -Pr<br>2- <i>i</i> -Pr<br>4- <i>tert</i> -Bu<br>2-Cl-4- <i>tert</i> -Bu<br>4-C <sub>9</sub> H <sub>19</sub><br>2-Cl-4-C <sub>9</sub> H <sub>19</sub><br>4-Ph<br>2-Cl-4-Ph<br>2-Ph<br>6-Cl-2-Ph<br>2-Cyclohex<br>6-Cl-2-Cyclohex<br>3,5-Me <sub>2</sub><br>2-Cl-3,5-Me <sub>2</sub><br>4- <i>tert</i> -Bu-2-Me<br>6- <i>tert</i> -Bu-3-Me<br>2- <i>tert</i> -Bu-4-Me<br>2,4- <i>i</i> -Pr <sub>2</sub><br>2-4-Am.                                                                                                                                                                                                                                      |      | 2.86<br>3.55<br>2.76<br>3.14<br>3.83<br>5.94<br>6.65<br>3.59<br>4.28<br>3.59<br>4.28<br>3.59<br>4.28<br>3.97<br>4.67<br>2.46<br>3.15<br>3.64<br>3.64<br>3.64<br>4.06<br>6.46 | $\begin{array}{c} -0.17\\ -0.15\\ 0.06\\ -0.23^{m}\\ -0.20\\ 0.01\\ -0.16^{\prime}\\ 0.05\\ 0.01^{n}\\ 0.22\\ 0.01\\ 0.22\\ -0.15^{o}\\ 0.06\\ -0.14\\ 0.07\\ -0.34\\ -0.59^{p}\\ -0.69^{q}\\ -0.38^{m}\\ -0.30^{m}\\ -0.20^{r}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | $\begin{array}{c} 3.35\\ 3.40\\ 3.30\\ 3.46\\ 3.52\\ 4.14\\ 3.82\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 3.85\\ 3.26\\ 3.35\\ 3.45\\ 3.64\\ 3.82\\ 3.66\\ 4.05\end{array}$    |
| 2-Cl-6-tert-Bu-3-Me <sup>k</sup><br>6-Cl-2-tert-Bu-4-Me <sup>k</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4- <i>i</i> -Pr<br>2-Cl-4- <i>i</i> -Pr<br>2- <i>i</i> -Pr<br>4- <i>tert</i> -Bu<br>2-Cl-4- <i>tert</i> -Bu<br>4-C <sub>9</sub> H <sub>19</sub><br>2-Cl-4-C <sub>9</sub> H <sub>19</sub><br>4-Ph<br>2-Cl-4-Ph<br>2-Cl-4-Ph<br>2-Ph<br>6-Cl-2-Ph<br>2-Cyclohex<br>6-Cl-2-Cyclohex<br>3,5-Me <sub>2</sub><br>2-Cl-3,5-Me <sub>2</sub><br>4- <i>tert</i> -Bu-2-Me<br>6- <i>tert</i> -Bu-3-Me<br>2- <i>tert</i> -Bu-3-Me<br>2- <i>tert</i> -Bu-4-Me<br>2,4- <i>i</i> -Pr <sub>2</sub><br>2,4-Am <sub>2</sub><br>6-Cl-2- <i>i</i> -Pr                                                                                                                                                          |      | 2.86<br>3.55<br>2.76<br>3.14<br>3.83<br>5.94<br>6.65<br>3.59<br>4.28<br>3.59<br>4.28<br>3.59<br>4.28<br>3.97<br>4.67<br>2.46<br>3.15<br>3.64<br>3.64<br>3.64<br>4.06<br>6.46 | $\begin{array}{c} -0.15\\ -0.15\\ 0.06\\ -0.23^{m}\\ -0.20\\ 0.01\\ -0.16^{\prime}\\ 0.05\\ 0.01^{n}\\ 0.22\\ 0.01\\ 0.22\\ -0.15^{o}\\ 0.06\\ -0.14\\ 0.07\\ -0.34\\ -0.59^{p}\\ -0.69^{q}\\ -0.38^{m}\\ -0.30^{r} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | $\begin{array}{c} 3.35\\ 3.40\\ 3.30\\ 3.46\\ 3.52\\ 4.14\\ 3.82\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 3.85\\ 3.26\\ 3.35\\ 3.45\\ 3.64\\ 3.82\\ 3.66\\ 4.05\\ \end{array}$ |
| 6-Cl-2-tert-Bu-4-Me <sup>k</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4- <i>i</i> -Pr<br>2-Cl-4- <i>i</i> -Pr<br>2- <i>i</i> -Pr<br>4- <i>tert</i> -Bu<br>2-Cl-4- <i>tert</i> -Bu<br>4-C <sub>9</sub> H <sub>19</sub><br>2-Cl-4-C <sub>9</sub> H <sub>19</sub><br>4-Ph<br>2-Cl-4-Ph<br>2-Cl-4-Ph<br>2-Ph<br>6-Cl-2-Ph<br>2-Cyclohex<br>6-Cl-2-Cyclohex<br>3,5-Me <sub>2</sub><br>2-Cl-3,5-Me <sub>2</sub><br>4- <i>tert</i> -Bu-2-Me<br>6- <i>tert</i> -Bu-3-Me<br>2- <i>tert</i> -Bu-4-Me<br>2,4- <i>i</i> -Pr <sub>2</sub><br>2,4-Am <sub>2</sub><br>6-Cl-2- <i>i</i> -Pr<br>6-Cl-2- <i>i</i> -Pr<br>6-Cl-2- <i>i</i> -Pr                                                                                                                                     |      | 2.86<br>3.55<br>2.76<br>3.14<br>3.83<br>5.94<br>6.65<br>3.59<br>4.28<br>3.59<br>4.28<br>3.59<br>4.28<br>3.97<br>4.67<br>2.46<br>3.15<br>3.64<br>3.64<br>3.64<br>4.06<br>6.46 | $\begin{array}{c} -0.17\\ -0.15\\ 0.06\\ -0.23^{m}\\ -0.20\\ 0.01\\ -0.16^{\prime}\\ 0.05\\ 0.01^{n}\\ 0.22\\ 0.01\\ 0.22\\ -0.15^{o}\\ 0.06\\ -0.14\\ 0.07\\ -0.34\\ -0.59^{p}\\ -0.69^{q}\\ -0.38^{m}\\ -0.30^{r} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | $\begin{array}{c} 3.35\\ 3.40\\ 3.30\\ 3.46\\ 3.52\\ 4.14\\ 3.82\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 3.85\\ 3.26\\ 3.35\\ 3.45\\ 3.64\\ 3.82\\ 3.66\\ 4.05\\ \end{array}$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4- <i>i</i> -Pr<br>2-Cl-4- <i>i</i> -Pr<br>2- <i>i</i> -Pr<br>4- <i>tert</i> -Bu<br>2-Cl-4- <i>tert</i> -Bu<br>4-C <sub>9</sub> H <sub>19</sub><br>2-Cl-4-C <sub>9</sub> H <sub>19</sub><br>4-Ph<br>2-Cl-4-Ph<br>2-Cl-4-Ph<br>2-Ph<br>6-Cl-2-Ph<br>2-Cyclohex<br>6-Cl-2-Cyclohex<br>3,5-Me <sub>2</sub><br>2-Cl-3,5-Me <sub>2</sub><br>4- <i>tert</i> -Bu-2-Me<br>6- <i>tert</i> -Bu-3-Me<br>2 <i>tert</i> -Bu-4-Me<br>2,4- <i>i</i> -Pr <sub>2</sub><br>2,4-Am <sub>2</sub><br>6-Cl-2- <i>i</i> -Pr<br>6-Cl-2 <i>i</i> -Pr<br>6-Cl-2 <i>i</i> -Pr<br>6-Cl-4- <i>tert</i> -Bu-2-Me <sup>k</sup><br>2-Cl-6- <i>tert</i> -Bu-3-Me <sup>k</sup><br>2-Cl-6- <i>tert</i> -Bu-3-Me <sup>k</sup> |      | 2.86<br>3.55<br>2.76<br>3.14<br>3.83<br>5.94<br>6.65<br>3.59<br>4.28<br>3.59<br>4.28<br>3.59<br>4.28<br>3.97<br>4.67<br>2.46<br>3.15<br>3.64<br>3.64<br>3.64<br>4.06<br>6.46 | $\begin{array}{c} -0.17\\ -0.15\\ 0.06\\ -0.23^{m}\\ -0.20\\ 0.01\\ -0.16^{\prime}\\ 0.05\\ 0.01^{n}\\ 0.22\\ 0.01\\ 0.22\\ -0.15^{o}\\ 0.06\\ -0.14\\ 0.07\\ -0.34\\ -0.59^{p}\\ -0.69^{q}\\ -0.38^{m}\\ -0.30^{r} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | $\begin{array}{c} 3.35\\ 3.40\\ 3.30\\ 3.46\\ 3.52\\ 4.14\\ 3.82\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 4.00\\ 3.85\\ 3.26\\ 3.35\\ 3.45\\ 3.64\\ 3.82\\ 3.66\\ 4.05\\ \end{array}$ |

 $6-Cl-2-4-i-Pr_2^k$ 

|                                             | TAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BLE I (C                                   | Continued)                                                                                                                                     |                                                                                               |                                                                                                                                                                              |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                     |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ii<br>XC₀H₄CH₂NCS                           | X<br>H<br>4-Cl<br>3-Cl<br>4-Br<br>3-Br<br>2-Br                                                                                                                                                                                                                                                                                                                                                                                                                                         | (                                          | Log P<br>2.83**<br>3.53<br>3.59<br>3.85<br>3.77<br>3.58                                                                                        |                                                                                               | σ<br>0.00<br>0.23<br>0.37<br>0.23<br>0.39<br>0.20                                                                                                                            |                                                                                                                                               | Log 1/C<br>Eq<br>4.8<br>5.6<br>5.1<br>5.2<br>5.1<br>5.2<br>5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ohsd*<br>10<br>30<br>99<br>33<br>22<br>38<br>57                                                                                                                                                                                                                                     |
|                                             | 4-I<br>3-I<br>4-Me<br>3-Me<br>4-MeO<br>2-MeO<br>4-NO <sub>2</sub><br>3-NO <sub>2</sub><br>4-CN                                                                                                                                                                                                                                                                                                                                                                                         |                                            | $\begin{array}{c} 4.09\\ 3.98\\ 3.35\\ 3.34\\ 2.79\\ 2.50\\ 3.07\\ 2.94\\ 2.51 \end{array}$                                                    |                                                                                               | $\begin{array}{c} 0.28 \\ 0.35 \\ -0.17 \\ -0.07 \\ -0.27 \\ -0.27 \\ 0.78 \\ 0.71 \\ 0.63 \end{array}$                                                                      |                                                                                                                                               | 5.6<br>5.7<br>4.2<br>5.2<br>4.2<br>4.6<br>4.8<br>4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32<br>59<br>37 <b>*</b><br>30<br>39 <b>*</b><br>30<br>30<br>35                                                                                                                                                                                                                      |
| Ij<br>(CH₃)₂RN <sup>+</sup> CH₂C6H₅· Cl     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            | $\begin{array}{c} E_{0} \ 42\\ 2.74\\ 2.46\\ 3.09\\ 4.11\\ 4.12\\ 4.14\\ 3.16\\ 3.18\\ 2.89\\ 3.21\\ \end{array}$                              | Eq 43<br>2.54<br>2.74<br>3.59<br>4.09<br>4.11<br>4.12<br>4.14<br>4.16<br>4.18<br>3.19<br>3.21 | $\begin{array}{c} -\text{Log } 1/C \text{ o} \\ & \text{Fq } 44 \\ 2.72 \\ 3.04 \\ 3.59 \\ 4.09 \\ 4.11 \\ 4.82 \\ 4.84 \\ 5.16 \\ 4.88 \\ 4.88 \\ 4.89 \\ 4.61 \end{array}$ | ${f bsd}^t$<br>2.54<br>3.04<br>4.09<br>4.63<br>5.12<br>5.14<br>4.86<br>4.88<br>4.19<br>4.21                                                   | $\begin{array}{c} {\bf Eq} \ 46 \\ 2, 54 \\ 3, 04 \\ 3, 59 \\ 4, 09 \\ 4, 63 \\ 4, 82 \\ 5, 14 \\ 4, 56 \\ 4, 16 \\ 3, 59 \\ 3, 61 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} \mathbf{E} \mathbf{q} \ 47 \\ 2 \ ,72 \\ 3 \ ,04 \\ 3 \ ,76 \\ 4 \ ,09 \\ 4 \ ,50 \\ 4 \ ,50 \\ 4 \ ,82 \\ 4 \ ,84 \\ 5 \ ,16 \\ 4 \ ,88 \\ 4 \ ,89 \\ 4 \ ,91 \end{array}$                                                                                       |
| Ik<br>N N NHC <sub>6</sub> H <sub>1</sub> X | X<br>p-NO <sub>2</sub><br>p-Cl<br>m-Cl<br>o-Cl<br>p-HO<br>p-HO<br>p-Me<br>p-Me<br>p-CH <sub>3</sub> CO<br>p-H <sub>2</sub> NSO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                            |                                            | 1.0g P 2.38 3.26 3.36 2.78 -0.74 1.16 2.38 1.18 -1.72                                                                                          |                                                                                               | $ \begin{array}{c} \sigma \\ 0.78 \\ 0.23 \\ 0.37 \\ 0.21 \\ -0.36 \\ -0.27 \\ -0.17 \\ 0.52 \\ 0.62 \end{array} $                                                           |                                                                                                                                               | $   \begin{array}{r}          Log 1/d \\             Fq \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\             5.6 \\   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 obs.177<br>14<br>75<br>60<br>51<br>51<br>72<br>51<br>51<br>51<br>72<br>51<br>51<br>72<br>51<br>51<br>72<br>51<br>87                                                                                                                                                               |
| I\<br>R₁COCH==CR₂R₃                         | $R_1 \\ C_6H_5 \\ C_6H_5 \\ 4-CH_3C_6H_4 \\ 4-CH_3OC_6H_4 \\ 4-ClC_8H_4 \\ 2-HOC_6H_4 \\ 2-HO-5-ClC_6H_3 \\ 2-HO-5-CH_3C_6H_3 \\ 2-HO-5-CH_3C_6H_3 \\ 2-HO-4-CH_3C_6H_3 \\ 4-HO-2-CH_3C_6H_3 \\ 2-HO-3-CH_3C_6H_3 \\ 2-HO-3-CH_3C_6H_3 \\ 2-HO-4_6-(CH_3)_2C_6H_2 \\ 2-HO-5-CH_3OC_6H_3 \\ 2-CH_3-4-HO-5-i-PrC_6H_2 \\ (trans) C_6H_3 \\ cis-Dibenzoyldichloroethylene \\ 2,4,6-(CH_3)_3C_6H_2 \\ 4-CH_3C_6H_4 \\ 4-ClC_6H_4 \\ 5-CH_3-2-ClC_6H_3 \\ 3-CH_3-4-ClC_6H_3 \\ \end{array}$ | R₂<br>HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH | 4-N<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>C<br>6<br>H<br>C<br>6<br>H<br>C<br>6<br>H<br>C<br>5-C<br>3-C | R3<br>H2C6H4<br>I6CO<br>I6CO<br>I6CO<br>H3C6H4CO<br>IC6H4CO<br>H3-2-CIC6H3CO<br>H3-4-CIC6H3CO | $\begin{array}{c} \log \left( \frac{1}{2} \right) \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1$                                                                         | $_{g}P$ 2<br>78<br>88<br>38<br>59<br>21<br>92<br>71<br>71<br>71<br>71<br>71<br>71<br>71<br>71<br>96<br>96<br>20<br>46<br>96<br>38<br>38<br>38 | 1.0<br>$\sigma^*(\mathbf{R}_2, \mathbf{R}_3)^v$<br>1.09<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98 | $\begin{array}{c} g \ RBR \ {\rm obs} {\rm d}^{9} \\ {\rm Eq} \ 24 \\ 1.35 \\ 0.42 \\ -0.36^{x} \\ 0.52 \\ 1.17^{x} \\ 0.26 \\ 1.11 \\ 0.91 \\ -0.32 \\ 0.21 \\ 0.21 \\ 0.72 \\ -0.05 \\ 1.01 \\ 1.85 \\ 1.85 \\ 1.96 \\ 1.44 \\ 0.72^{\prime} \\ 1.96 \\ 2.00 \\ 2.00 \end{array}$ |

# TABLE I (Continued)

| <b>.</b>           |                  | -                                      |               | _              |               |                          |                | Log MR obsdw                   |
|--------------------|------------------|----------------------------------------|---------------|----------------|---------------|--------------------------|----------------|--------------------------------|
| Im                 | N                | R<br>L                                 | R1            | R <sub>2</sub> | х<br>11       |                          | <i>s</i>       | Eq 15                          |
| $OR_1 O OR_2 X$    | 10.              | D.                                     | Mo            | Me             | н<br>ч        | 2.88                     | 0.00           | 0.03                           |
|                    | <i>π</i> -<br>Δ  | - <b>F</b> F<br> ] <sub>37</sub> ]     | Mo            | Me             | п<br>u        | 0.10<br>0.90             | 0.00           | 0.03                           |
|                    | N                | liyi<br>le                             | Me            | Me             | Me            | 2.68                     | -0.17          | 0.03                           |
| CI CH <sub>3</sub> | N                | Îe                                     | Me            | Me             | n-Pr          | 3.68                     | -0.15          | 0.35                           |
|                    | Ν                | ſe                                     | Me            | Me             | Allyl         | 3.38                     | -0.10          | 0.35                           |
|                    | Ν                | ſe                                     | Me            | $\mathbf{Me}$  | Cl            | 2.57                     | 0.23           | 0.64                           |
|                    | Ν                | ſe                                     | ${\bf Me}$    | $\mathbf{Me}$  | $\mathbf{Br}$ | 2.78                     | 0.23           | 0.69                           |
|                    | Ν                | ſe                                     | Me            | $\mathbf{Me}$  | I             | 3.18                     | 0.28           | 1.03                           |
|                    | Ν                | ſe                                     | Me            | $\mathbf{Et}$  | H             | 2.68                     | 0.00           | 0.31                           |
|                    | N                | ſe                                     | Me            | <i>n</i> -Pr   | H             | 3.18                     | 0.00           | 0.63                           |
|                    | N                | 1e                                     | Me            | <i>n</i> -Bu   | H             | 3.68                     | 0.00           | 0.95                           |
|                    | N                | 1e<br>1                                | Me<br>M.      | Allyl          | H             | 2.88                     | 0.00           | 0.63                           |
|                    | N                | 1e<br>1                                | Me            | Ph             | H             | 3.81                     | 0.00           | 0.67                           |
|                    | IV<br>N          | ie<br>Io                               | Me            | FICE2          |               | 4.31                     | 0.00           | 0.99                           |
|                    | N                | íe<br>Íe                               | Me            | Et.            | Br            | 3.28                     | 0.23           | 0.00                           |
|                    | N                | 1e                                     | Me            | Et             | I             | 3.68                     | 0.25           | 1 35                           |
|                    | N                | ſe                                     | Me            | Et             | Ēt            | 3.68                     | -0.15          | 0.35                           |
|                    | Ν                | ſe                                     | Me            | $\mathbf{Et}$  | $PhCH_2$      | 5.31                     | -0.10          | 1.31                           |
|                    | Ν                | ſe                                     | Me            | $n	ext{-}\Pr$  | Br            | 3.78                     | 0.23           | 1.92                           |
|                    | $\mathbf{N}$     | Ie                                     | Me            | $n	ext{-}\Pr$  | <i>n</i> -Pr  | 4.68                     | -0.15          | 0.98                           |
|                    | $\mathbf{N}$     | ſe                                     | $PhCH_2$      | ${ m Me}$      | н             | 4.31                     | 0,00           | 0.38z                          |
|                    | E                | t                                      | Me            | Me             | H             | 2.68                     | 0.00           | $0.92^{x}$                     |
|                    | N                | ſe                                     | Me            | $\mathbf{Me}$  | $PhCH_{2}$    | 4.81                     | -0.10          | ().40 <sup>z</sup>             |
|                    | N                | ſe                                     | Me            | n-Pr           | Ι             | 4.18                     | 0.28           | $2.86^{x}$                     |
|                    | N                | Ie<br>-                                | Me            | <i>n</i> -Pr   | PhCH₂         | 5.83                     | -0.10          | $2.83^{x}$                     |
|                    | N                | le                                     | Me            | <i>n-</i> Bu   | $PhCH_2$      | 6.33                     | -0.10          | $0.14^{z}$                     |
| In                 | R                |                                        | R             |                | Σπ            | Σσ                       | $\mathbf{Log}$ | 1/C obsd <sup>#</sup><br>Eq 56 |
| BB'NCSSNo          | Me               |                                        | ч             | 0              | 50            | 0.40                     |                | 4.09                           |
|                    | Et               |                                        | н             | 1              | .00           | 0.49                     |                | 4.03                           |
|                    | $\frac{1}{n-Pr}$ |                                        | Ĥ             | 1              | .50           | 0.3 <del>3</del><br>0.37 |                | 3 74                           |
|                    | n-Bu             |                                        | H             | 2              | .00           | 0.36                     |                | 3.25                           |
|                    | <i>i</i> -Bu     |                                        | Н             | 1              | .80           | 0.36                     |                | 2.96                           |
|                    | ${f Me}$         |                                        | ${ m Me}$     | 1              | . 00          | 0.00                     |                | 4.88                           |
|                    | $\mathbf{Et}$    |                                        | $\mathbf{Et}$ | 2              | . 00          | -0.20                    |                | 3.77                           |
|                    | $i	ext{-}\Pr$    |                                        | i-Pr          | 2              | .60           | -0.38                    |                | 3.22                           |
|                    | i-Pr             |                                        | H             | 1              | . 30          | 0.30                     |                | 2.97                           |
|                    | $(CH_2)_4$       |                                        |               | 1              | . 64          | 0.00                     |                | 3.67                           |
|                    | $(CH_2)_{5}$     |                                        |               | 2              | .05           | 0.00                     |                | 2.91                           |
| Io                 |                  | R                                      |               |                | Log P         |                          | $\log 1/C$     | obsd <sup>z</sup>              |
| RCOO-Na+           |                  | C <sub>4</sub> H <sub>6</sub>          |               |                | -2.70         |                          | 1 70           | )                              |
|                    |                  | $C_5H_{11}$                            |               |                | -2.20         |                          | 2.40           | )                              |
|                    |                  | $C_6H_{13}$                            |               |                | -1.70         |                          | 3.00           | ,<br>)                         |
|                    |                  | $C_7H_{15}$                            |               |                | -1.20         |                          | 3.00           | )                              |
|                    |                  | $C_8H_{17}$                            |               |                | -0.70         |                          | 3.00           | )                              |
|                    |                  | $C_9H_{19}$                            |               |                | -0.20         |                          | 2.40           | )                              |
| -                  |                  | -                                      |               |                |               |                          | $\log 1/C$ ob  | sdaa                           |
|                    |                  | R                                      |               |                | Log P         |                          | Eq 22          |                                |
| ROH                | (                | $C_6H_{13}$                            |               |                | 1.84          |                          | 1.90           |                                |
|                    | (                | $\cup_{8}\mathbf{H}_{17}$              |               |                | 2.84          |                          | 2.75           |                                |
|                    |                  | ⊃ <sub>10</sub> п <sub>23</sub><br>∩н. |               |                | 3.84<br>1.21  |                          | 3,60           |                                |
|                    | (                | $C_{12}H_{17}$                         |               |                | 4.84          |                          | 2.16           |                                |
| la                 | 77               |                                        |               | T P            |               |                          |                | C obsdaa                       |
| rų<br>X            | л<br>Ц           |                                        |               | Log P          |               | σ<br>0.00                | E              | iq 27                          |
|                    | н<br>4_С1        |                                        |               | 3.28<br>3.00   |               | 0.00                     | 4              | E.70                           |
|                    | 4-01<br>3-Br     |                                        |               | 0.99<br>4 14   |               | 0.23<br>0.30             | 4              | E.90<br>5 15                   |
|                    | 4-Br             |                                        |               | 4.14           |               | 0.23                     | i.             | 5.20                           |
|                    | 4-I              |                                        |               | 4.40           |               | 0,28                     | ŗ              | 5.35                           |
|                    | $4-EtO_2C$       |                                        |               | 3.77           |               | 0.45                     | 5              | 5.10                           |
|                    | 4-PhO            |                                        |               | 5.36           | -             | -0.32                    | Ę              | 5.30                           |
|                    | $4-NO_2$         |                                        |               | 3.00           |               | 0.78                     | 4              | L.60                           |
|                    | 3,4-(CH          | )4                                     |               | 4.63           |               | 0.17                     | 5              | 5.30                           |
|                    | <b>4-P</b> h     |                                        |               | 5.41           |               | 0.01                     | 5              | 5.20                           |

R

| τ.                                    | R                         |                     |       | Log P           |      | Log             | $1/C \text{ obsd}^{bb}$        |  |  |
|---------------------------------------|---------------------------|---------------------|-------|-----------------|------|-----------------|--------------------------------|--|--|
| Phenols                               | н                         |                     |       | Log F<br>1 46** |      |                 | ng 25                          |  |  |
| 1 menous                              | 4-Br                      |                     |       | $2.59^{ss}$     |      |                 | 1.94                           |  |  |
|                                       | 2-Me-4-Br                 |                     |       | 3.09            |      |                 | 2,35                           |  |  |
|                                       | 2-Et-4-Br                 |                     |       | 3.59            |      |                 | 2.70                           |  |  |
|                                       | 2-Pr-4-Br                 |                     |       | 4.09            |      |                 | 3.18                           |  |  |
|                                       | 2-Bu-4-Br                 |                     |       | 4.59            |      | 3.66            |                                |  |  |
|                                       | 2-Am-4-Br                 |                     |       | 4.59            |      |                 | 3. <b>66</b>                   |  |  |
|                                       | 2-Am-4-Br                 |                     |       | 5.09            |      | 3.78            |                                |  |  |
|                                       | 2-sec-Am-4-               | Br                  |       | 4.89            |      |                 | 3.47                           |  |  |
|                                       | 2-Hex-4-Br                |                     |       | 5.59            |      |                 | 3.81                           |  |  |
|                                       | 2-Cyclohexy               | yl-4-Br             |       | 5.10            |      |                 | 3.71                           |  |  |
|                                       | 2-Br                      | A                   |       | 2,35**          |      |                 | 1.72                           |  |  |
|                                       | 2-Br-4-lett-A             | Am                  |       | 4,03            |      |                 | 3.23<br>2.71                   |  |  |
|                                       | 2-Dr-4-Rex<br>2-Br-4-Pr-3 | 5-Me.               |       | 0,00<br>4 07    |      |                 | 3.43                           |  |  |
|                                       | 2-DI-4-11-0               | ,0-,1422            |       | 4.91            |      |                 | 0.10                           |  |  |
| Ts                                    |                           | R                   |       | Log P           |      | Log             | 1/C obsd <sup>cc</sup><br>Eq 3 |  |  |
| T-HOC-H-COOP                          | ١                         | 10                  |       | 1 45            |      |                 | 1.80                           |  |  |
| <i>p</i> -110061140001                | T<br>T                    | lt.                 |       | 1.45            |      |                 | 2 40                           |  |  |
|                                       | -<br>P                    | Pr                  |       | 2 45            |      |                 | 3.00                           |  |  |
|                                       | Ē                         | -<br>Bu             |       | 2.95            |      |                 | 3.00                           |  |  |
|                                       | F                         | ent                 |       | 3.45            |      |                 | 3.20                           |  |  |
|                                       | H                         | Iex                 |       | 3.95            |      |                 | 3.60                           |  |  |
|                                       | H                         | Iep                 |       | 4,45            |      |                 | 4.22                           |  |  |
|                                       |                           |                     |       |                 |      | $\sim$ Log 1?C  | obsd <sup>d</sup> d            |  |  |
| It                                    | $\mathbf{R}_1$            | $\mathbf{R}_2$      |       | $\log P$        |      | Eq 4            | Eq 5                           |  |  |
| $R_1R_2NCH_2CH_2N(CH_3)_2$            | $\mathbf{Ph}$             | Me                  |       | 1.93            |      | 2.73            | 2.73                           |  |  |
|                                       | Cyclohex                  | ${ m Me}$           |       | 2.31            |      | 2.27            | 2.27                           |  |  |
|                                       | n-Oct                     | n-Pr                |       | 4.60            |      | 2.86            |                                |  |  |
|                                       | n-Non                     | Me                  |       | 4.30            |      | 3,31            | 2.84                           |  |  |
|                                       | $n	ext{-Hep}$             | n-Pr                |       | 4.30            |      | 3,73            | 2.84                           |  |  |
|                                       | <i>n</i> -Oct             | $n-\mathbf{Pr}$     |       | 4.80            |      | 3.82            | 2.86                           |  |  |
|                                       | n-Hep                     | n-Bu                |       | 4.80            |      | $2.86^{x}$      | $2.39^{x}$                     |  |  |
|                                       | $n-C_{12}H_{25}$          | Me                  |       | 5.80            |      | 4.35            | 4.35                           |  |  |
|                                       | n-Hep                     | <i>n</i> -Pr        |       | 4.00            |      | 2.84            | 4.00*                          |  |  |
|                                       | $n - C_{14}H_{29}$        | Me                  |       | 6.80            |      | 0.40<br>0.00*   | 4,92 <sup>2</sup><br>9 96      |  |  |
|                                       | n-Oct<br>Cuelenout        | <i>n-</i> Би<br>Мо  |       | 1.60            |      | 2.09"<br>7.66z  | 3.30<br>9.71                   |  |  |
|                                       | 1-Neph                    | Me                  |       | 3 17            |      | 3 46            | 2.11                           |  |  |
|                                       | n-Oct                     | n-Hex               |       | 6 30            |      | 4.45            | 3.41                           |  |  |
|                                       | 1-Naph                    | n-Bu                |       | 4.67            |      | 3.53            |                                |  |  |
|                                       | 1-Naph                    | n-Oct               |       | 6.67            |      | 5.12            | 4.21                           |  |  |
|                                       | Ph                        | n-Oct               |       | 5.43            |      | 4.14            | 3.84                           |  |  |
|                                       | $\mathbf{Ph}$             | $n-\mathbf{Bu}$     |       | 3.43            |      | 3.77            | 2.82                           |  |  |
|                                       | 4-MeO-Ph                  | $n	ext{-}	ext{Hep}$ |       | 4.89            |      | 4.77            | 2.96                           |  |  |
|                                       | 1-Naph                    | $n-C_{10}H_{21}$    |       | 7.67            |      | 5.15            |                                |  |  |
|                                       | 1-Naph                    | $n	ext{-Hex}$       |       | 5. <b>6</b> 7   |      | 5.08            | 4.47                           |  |  |
|                                       | 1-Naph                    | n-Non               |       | 7.17            |      | 5.42            | 4.53                           |  |  |
|                                       | $C_{13}H_{27}$            | Me                  |       | 6.30            |      | 3.81            | 4.15                           |  |  |
|                                       | $C_{18}H_{37}$            | Me                  |       | 8.80            |      | 5.44            | 4.47                           |  |  |
|                                       | $C_{17}H_{35}$            | Me                  |       | 8.30            |      | 0,42<br>5,87x   | 3 00                           |  |  |
|                                       | 4-01-1 11                 | nep                 |       | 1.60            |      | 5.51            | 9.00                           |  |  |
| 1                                     | 13                        | Log D               | -     |                 |      | $ \log 1/C$ obs | idee                           |  |  |
| A A A A A A A A A A A A A A A A A A A | п                         | 2 70                | 0,00  |                 | 2 27 | 3 80            | 4 37                           |  |  |
|                                       | п<br>4 Мо                 | 0.19<br>1.90        | -0.17 |                 | 3.30 | 4 39            | 4.39                           |  |  |
| · >→ NHCH <sub>2</sub> >              | 2.4-Me.                   | 4 79                | -0.31 |                 | 3 42 | 4.42            | 4.42                           |  |  |
|                                       | 4-Cl                      | 4.72                | 0.23  |                 | 3.95 | 4.95            | 4.95                           |  |  |
| CI                                    | 3-Cl                      | 4.77                | 0.37  |                 | 3.95 | 4.95            | 4.95                           |  |  |
|                                       | $2,4$ - $Cl_2$            | 5.41                | 0.44  |                 | 4.48 | 5.00            | 5.00                           |  |  |
|                                       | 4-COOH                    | 3.91                | 0.27' |                 |      |                 |                                |  |  |
|                                       | 2-COOH                    | 3.91                | 0.27  |                 |      | $3.44^{x}$      | $3.97^{x}$                     |  |  |
|                                       | p-OH                      | 2.72                | -0.36 |                 | 2.92 | 3.92            | 3.92                           |  |  |
|                                       | $2,3-(C_4H_4)$            | 5.14                | 0.17  |                 | 3.97 | 4.97            | 4.97                           |  |  |
|                                       |                           |                     |       |                 |      | Log             | $1/C \text{ obsd}^{ff}$        |  |  |
|                                       | R                         |                     |       | Log P           |      |                 | Eq 48                          |  |  |
| RCOO-Na+                              | H                         |                     |       | -4.70           |      |                 | ∠.09<br>2.09                   |  |  |
|                                       | 1V10<br>124               |                     |       | -4.20<br>-3.70  |      |                 | 2 37                           |  |  |
|                                       | 1.1                       |                     |       | 0.10            |      |                 | · · - ·                        |  |  |

TABLE I (Continued)

TABLE I (Continued) Log 1/C obsdff Eq 48 R Log P Ιv n-Pr -3.202.45*i*-Pr -3.402.17n-Bu -2.702.54-2.202.89n-Am -1.703.14n-Hex -1.203.23n-Hep n-Oct -0.703.39 *n*-Non -0.203.69 0.30 3.84 $n - C_{10}H_{21}$ n-C10H19 0.00 3,90 0.80 2.95n-C11H23 1.30 2.68  $n - C_{12} H_{25}$ Log 1/C obsdoo Ιw R Log P Eq 30 Н 2.39\*\* 4.002-R-4-ClC<sub>6</sub>H<sub>3</sub>OH 3.07Me4.00 $CH(NH_2)CH_3$ 1.653.40COCH<sub>3</sub> 2.283.00 CH<sub>2</sub>Ph 5.025.30 $\mathrm{CH}(\mathrm{NH}_2)\mathrm{Ph}$ 3.284.30COPh 3.914.95CH<sub>2</sub>-Pyr-2 3.725,00CH<sub>2</sub>-Thenyl-2 4.885.30CH2-Naph-2 6.44 5.30CH2-Furyl-2 4.394.70  $\log 1/C$  obsd<sup>ii</sup> R  $\log P$ Eq 21 Ιx 3.133.18 n-Hex n-Hep 3,63 3.52n-Oct 4.134.26*n*-Non 4.634.595.134.32 $n - C_{10}H_{21}$  $n - C_{11}H_{23}$ 5.633.65  $\log 1/C \text{ obsd}^{hh}$ Iy R Log P Eq 51 -2.20RCOO-Na+ n-Am 3.37 -1.703.42n-Hex n-Hep -1.203.76 n-Oct -0.703,80 *n*-Non -0.204.14 $n-C_{10}H_{21}$ 0.304.47*n*-C<sub>10</sub>H<sub>19</sub> 0.00 4.47  $n - C_{11}H_{23}$ 0.80 4.51 $n-C_{12}H_{23}$ 1.304.53 $n-C_{13}H_{27}$ 1.803.96 1-Me-C<sub>8</sub>H<sub>16</sub> -0.403,84  $1-Me-C_{11}H_{22}$ 1.104.532-Me-C<sub>11</sub>H<sub>22</sub> 4.231.10 3-Me-C<sub>11</sub>H<sub>22</sub> 1.10 4.533,7,11-(Me)<sub>3</sub>C<sub>13</sub>H<sub>24</sub> 2.704.032.103,68<sup>z</sup>  $2-Me-C_{13}H_{26}$ Log PC' obsdii Eq 23 R Log P 2.390.76 2-H 2-Me2.891.252-Et 3.391.662-*n*-Pr 3.89 2.182-n-Bu 4.392,502-*n*-Am 4.892.932-sec-Am 4.692.732-n-Nex 5.393,36 2.832-Cyclohex 4.902-*n*-Nep 5.893.213-Me 2.951.223.39  $3,5-Me_2$ 1.626-Et-3Me 3.89 2.34

6-n-Pr-3-Me

6-*i*-Pr-3-Me

4.39

4.19

2.47

2.44

|                    | TAI                             | BLE I (Continu  | ed)         |                  |            |                                                                       |
|--------------------|---------------------------------|-----------------|-------------|------------------|------------|-----------------------------------------------------------------------|
| -                  |                                 |                 |             |                  | Le         | $\log PC' \text{ obsd}^{ij}$                                          |
| lz                 | R                               |                 |             | $\log P$         |            | Eq. 23                                                                |
|                    | 2-Et-3,5-                       | $Me_2$          |             | 4.39             |            | 2.41                                                                  |
|                    | 6-sec-Bu-                       | 3-Me            |             | 4.69             |            | 2.77                                                                  |
|                    | 2- <i>i</i> -Pr-3,              | $5-Me_2$        |             | 4.69             |            | 2,77                                                                  |
|                    | 6-Et <sub>2</sub> -Me           | -3-Me           |             | 5.19             |            | 3.05                                                                  |
|                    | 6- <i>i</i> -Pr-2-3             | Et-3-Me         |             | 5.19             |            | 2.52                                                                  |
|                    | 2-sec-Bu-                       | 3.5-Me          |             | 5 19             |            | 3 09                                                                  |
|                    | 2-660-24<br>2-EtaMe-            | 3.5-Me          |             | 5 69             |            | 2 92                                                                  |
|                    |                                 | 0,0-1402        |             | 0.00             |            | 0,20                                                                  |
| Ia'                | В                               | х               | Y           | Log P            | Σσ         | $\operatorname{Log} 1/C \operatorname{obsd}^{\kappa\kappa}$<br>Eq. 17 |
|                    | 2-Me                            | OH              | OH          | 1 38             | -0.14      | 2.26                                                                  |
|                    | 2 110                           | OH              | н           | 9 14             | -0.14      | 2.20                                                                  |
|                    | 2-51e                           | UII<br>TT       |             | 0.1 <del>1</del> | -0.14      | 2.40                                                                  |
| R                  | 2-516                           | 11              |             | 1 90             | -0.14      | 2,79                                                                  |
|                    | 2-01                            | ОП              | И           | 1.29             | 0.21       | 2.31                                                                  |
|                    | 2-Cl                            | OH              | FI          | 2.05             | 0,21       | 2.84                                                                  |
|                    | 4-Cl                            | ОН              | ОН          | 1.40             | 0.23       | 2.31                                                                  |
|                    | 4-Cl                            | ОН              | Н           | 2.16             | 0,23       | 2.81                                                                  |
|                    | 4-Cl                            | Η               | OH          | 2.36             | 0.23       | 3.07                                                                  |
|                    | $2,6	ext{-}\mathrm{Cl}_2$       | OH              | OH          | 1.88             | 0.42       | 2.37                                                                  |
|                    | $2,6-Cl_2$                      | OH              | Н           | 2.64             | 0.42       | 3.04                                                                  |
|                    | $2,4-Cl_2$                      | OH              | н           | 2.75             | 0.44       | 3.35                                                                  |
|                    | $2.4-Cl_2$                      | OH              | OH          | 1.99             | 0.44       | 2.61                                                                  |
|                    | 4-Cl-2-Me                       | OH              | Н           | 2.84             | 0.09       | 3.30                                                                  |
|                    | 4-Cl-2-Me                       | OH              | OH          | 2.08             | 0.09       | 2.33                                                                  |
|                    | 4-Cl-3-Me                       | OH              | OH          | 1.91             | 0.16       | 2.90                                                                  |
|                    | 4-Cl-3-Me                       | OH              | н           | 2 67             | 0.16       | 3 30                                                                  |
|                    | 6-Cl-2-Me                       | OH              | он          | 1.97             | 0.07       | 2 33                                                                  |
|                    | 6 Cl-2-Me                       | OH<br>OH        | ы           | 2 73             | 0.07       | 2.00<br>2.70z                                                         |
|                    | 6 Cl 2-Me                       | и<br>Н          | 0H          | 2.19             | 0.07       | 2.10<br>9.78x                                                         |
|                    | 4 Cl 2 6 Ma                     | он<br>Он        | 0H          | 2.56             | -0.05      | 2.76                                                                  |
|                    | 4 - C + 2, 6 - M + 2            | OH              | U<br>U      | 2.10             | -0.05      | 2.70                                                                  |
|                    | 4 - 01 - 2, 0 - 010 = 0         | u U             | OH<br>OH    | 3.72             | -0.05      | 0.01<br>9.51                                                          |
|                    | $4 - C_{1-2}, 0 - M_{2}$        |                 | 011         | 0.12             | -0.00      | 0.01                                                                  |
|                    | $4 - C(1 - 3_{1,2}) - M(2_{2})$ | OH              | OH          | 2.42             | 0.05       | 2 10                                                                  |
|                    | 2,0-012-4-116                   |                 |             | 2,40             | 0.20       | •), 10<br>2), 69                                                      |
|                    | 4-01-3, 5-102                   | OH              | II<br>II    | 5.18             | 0.09       | 3.05                                                                  |
|                    | 2,6-Cl <sub>2</sub> -4-Me       | OH              | H           | 3.16             | 0.25       | 3.47                                                                  |
|                    | 4-CI-3, Me <sub>2</sub>         | н               | OH          | 3.38             | 0.09       | 3.93                                                                  |
|                    | 2,6-Cl <sub>2</sub> -4-Me       | Н               | OH          | 3.30             | 0.25       | 3.07                                                                  |
| <b>T</b> 1. /      |                                 | L D             |             | _                | <i>b</i> ' | $\log 1/C \operatorname{obsd}^{\mathcal{U}}$                          |
| 1 D                | л<br>И                          |                 |             | <i>σ</i>         | <i>R</i> R | 1 71                                                                  |
| X                  | H                               | 1.10**          |             | 0.00             | 0.00       | 1.51                                                                  |
| CH <sup>i</sup> OH | 4-Cl                            | 1.96**          |             | 0.23             | 0.10       | 2.07                                                                  |
|                    | 2,4-Cl <sub>2</sub>             | 2.55            |             | 0.45             | 0.20       | 3.07                                                                  |
|                    | $3,4-Cl_2$                      | 2.80            |             | 0.60             | 0.18       | 3.07                                                                  |
|                    | $2,4_{1}5-Cl_{3}$               | 3.39            |             | 0.82             | 0.28       | 3.32                                                                  |
|                    | 3,4,5-Cl <sub>3</sub>           | 3.64            |             | 0.97             | 0.26       | 3.63                                                                  |
|                    | 2-Br                            | 1.86            |             | 0.20             | 0.12       | 2.15                                                                  |
|                    | 4-Br                            | 2, 12           |             | 0.23             | 0.12       | 2.27                                                                  |
|                    | 4-I                             | <b>2</b> , $36$ |             | 0.28             | 0.12       | 2.75                                                                  |
|                    | 4-Me                            | $1.59^{ss}$     | -           | 0.17             | 0.03       | 1.79                                                                  |
|                    | $2,4-Me_2$                      | 2.26            | _           | 0.31             | 0.06       | 2.14                                                                  |
|                    | 4-Cl- $3,5$ -Me <sub>2</sub>    | 2.96            |             | 0.09             | 0.16       | 3.05                                                                  |
|                    | $4-I-3, 5-Me_2$                 | 3, <b>36</b>    |             | 0.14             | 0.28       | 3.42                                                                  |
|                    | $2-NO_2$                        | 0.87            |             | 0.76             | 0.41       | 2.49                                                                  |
|                    | 4-NO <sub>2</sub>               | 1.26**          |             | 0.78             | 0.41       | 2.00                                                                  |
|                    | 4-CN                            | 0.78            |             | 0.63             | 0.24       | 1.67                                                                  |
|                    | 2-OH                            | 0.56            | _           | 0.36             | 0.17       | 1.39                                                                  |
|                    | 3 <b>-</b> OH                   | 0.49**          |             |                  |            | 1.39                                                                  |
|                    | 4-OH                            | 0.25''          | -           | 0.36             | 0.17       | 1.39                                                                  |
|                    |                                 |                 |             |                  |            | $\log 1 C \operatorname{obsd}^{mm}$                                   |
| Ic'                | Х                               |                 | $\log P$    |                  | σ          | Eq 55                                                                 |
|                    | Н                               |                 | 1.99        |                  | 0.00       | 2.89                                                                  |
|                    | 2-Cl                            |                 | 2.58        |                  | 0.21       | 3.28                                                                  |
| l<br>X             | 4-Cl                            |                 | <b>2.69</b> |                  | 0.23       | 3.25                                                                  |
|                    | 3-Cl                            |                 | 2.75        |                  | 0.37       | 3.12                                                                  |
|                    | $2,4	ext{-}	ext{Cl}_2$          |                 | 3.28        |                  | 0.44       | 3.49                                                                  |
|                    | 2,4,6-Cl <sub>3</sub>           |                 | 3.87        |                  | 0.65       | 3.46                                                                  |
|                    | 2,4,5-Cl <sub>3</sub>           |                 | 4.04        |                  | 0.81       | 3.54                                                                  |
|                    | 2,4,5,6-0                       | 214             | 4.63        |                  | 1.02       | 3.45                                                                  |
|                    | $\mathbf{Cl}_5$                 |                 | 5.39        |                  | 1.39       | 3.35                                                                  |
|                    | $\mathbf{Br}_5$                 |                 | 6.39        |                  | 1.41       | 3.35                                                                  |

|                                                                    |                |                        |          | Log   | 1/C obsd.                           |  |  |
|--------------------------------------------------------------------|----------------|------------------------|----------|-------|-------------------------------------|--|--|
| $\mathbf{Id}^{\prime}$                                             | R              |                        | $\log P$ | Eq 52 | Eq 53                               |  |  |
| RNHCNH <sub>2</sub> ·CH <sub>3</sub> COOH                          | $C_{11}H_{23}$ | 1                      | 0,65     | 5.30  | 5.15                                |  |  |
|                                                                    | $C_{12}H_{21}$ | i                      | 1.15**   | 5.41  | 5.24                                |  |  |
| NH                                                                 | $C_{18}H_{2}$  | 7                      | 1.65     | 5.54  | 5.32                                |  |  |
|                                                                    | $C_{14}H_2$    | 9                      | 2.15     | 5.51  | 5.38                                |  |  |
|                                                                    | $C_{16}H_{83}$ | 3                      | 3.15     | 5.39  | 5.21                                |  |  |
|                                                                    | $C_{18}H_{8}$  | 7                      | 4,15     | 4.65  | 4.76                                |  |  |
|                                                                    |                |                        |          |       | $\log 1/C$ obsd <sup>nn</sup>       |  |  |
| Ie'                                                                |                | R                      | $\log P$ |       | Eq 41                               |  |  |
| ~                                                                  | н              |                        | 1.05     |       | 3,63                                |  |  |
| Br <sup>-</sup>                                                    | $\mathbf{Et}$  |                        | 2.05     |       | 3.98                                |  |  |
| N <sup>+</sup> R                                                   | Hex            |                        | 4.05     |       | 4.07                                |  |  |
| C12H24                                                             | $\mathbf{Hep}$ |                        | 4.55     |       | 4.12                                |  |  |
| - 16, - 20                                                         | 3-00           | et                     | 5.05     |       | 4.09                                |  |  |
|                                                                    | 2-M            | e-Oct                  | 5,35     |       | 3.81                                |  |  |
|                                                                    |                |                        |          | ~I    | Log 1/C obsd <sup>pp</sup>          |  |  |
| If'                                                                | x              | $\operatorname{Log} P$ | σ        | Eq 9  | Eq 12                               |  |  |
| $p-\mathrm{XC}_{6}\mathrm{H}_{4}(\mathrm{CH}_{2})_{2}\mathrm{NCS}$ | H              | 3.33                   | 0.00     | 4.32  | 4.80                                |  |  |
|                                                                    | Cl             | 4 , $03$               | 0.23     | 4.74  | 5.05                                |  |  |
|                                                                    | I              | 4.59                   | 0.28     | 4.85  | 5.15                                |  |  |
|                                                                    | ${ m Me}$      | 3.85                   | -0.17    | 4.60  | 5.28                                |  |  |
|                                                                    | MeO            | 3 , $29$               | -0.27    | 4.28  | 4.72                                |  |  |
|                                                                    | $NO_2$         | 3.57                   | 0.78     | 4.41  | 4.72                                |  |  |
|                                                                    |                |                        | _        |       | $\log 1/C \operatorname{obsd}^{qq}$ |  |  |
| Ig'                                                                | R              |                        | $\log P$ |       | Eq 36                               |  |  |
| $RNH_3^+$                                                          | $C_8H_{17}$    |                        | -0.15    |       | 2.30                                |  |  |
|                                                                    | $C_{10}H_{21}$ |                        | 0.85     |       | 2.58                                |  |  |
|                                                                    | $C_{12}H_{25}$ |                        | 1.85**   |       | 2.84                                |  |  |
|                                                                    | $C_{14}H_{29}$ |                        | 2.85     |       | 2.76                                |  |  |
|                                                                    | $C_{16}H_{33}$ |                        | 3.85     |       | 1,76                                |  |  |
|                                                                    | $C_{18}H_{37}$ |                        | 4.85     |       | 1.66                                |  |  |

TABLE I (Continued)

<sup>a</sup> From R. G. Owens, Contrib. Boyce Thompson Inst., 17, 273 (1953). <sup>b</sup> From J. C. LoCicero, D. E. H. Frear, and H. J. Miller, J. Biol. Chem., 172, 689 (1948); slide germination test employed. <sup>c</sup> From R. G. Ross and R. G. Ludwig, Can. J. Bot., 35, 65 (1967); C is ED<sub>50</sub> for inhibition of spore germination. <sup>d</sup> From R. H. Wellman and S. E. A. McCallan, Contrib. Boyce Thompson Inst., 14, 151 (1946); C is fungistatic LD<sub>50</sub> from slide germination test. \* From J. M. Leonard and V. L. Blackford, J. Bacteriol., **57**, 339 (1947); C is lowest M concen for 100% inhibit. 'Estimated from other homologous functions. \* From O. Wyss, B. J. Ludwig, and R. R. Joiner, Arch. Biochem., **7**, 415 (1945); C is M concen just inhibiting growth. \* From H. G. Shirk, R. R. Corey, and P. L. Poelma, Arch. Biochem. Biophys., **32**, 392 (1951); C is M concn causing 50% growth inhib.  $i \sigma_0$  of  $i-C_3H_7$  function in phenol. i From H. G. Shirk and R. R. Corey, Arch. Biochem. Biophys., **38**, 417 (1952); C is same as in h. \* These data points not included in final regression equation because they were very poorly predicted; this is likely due to shielding effects of bulky 2,6-substituents. <sup>1</sup> From A. C. Farthing and B. Nam, "Steric Effects in Conjugated Systems," Academic Press, New York, N. Y., 1958, p 131. "See *i*. "From R. W. Taft in "Steric Effects in Organic Chemistry," M. S. Newman, Ed., Wiley, New York, N. Y., 1956, p 595. " $\sigma_{\nu}$  from M. Charton, J. Chem. Soc., 1205 (1964) used. P Taken from report of G. G. Smith and D. A. K. Jones, Abstracts of 144th National Meeting of the American Chemical Society, Los Angeles, Calif., April 1963, No. P58M. See n, p 591. Jos assumed equal to  $\sigma_p$  from M. Charton, J. Org. Chem., 30, 552 (1965). 🕐 From L. Drobnica, M. Zemanová, P. Nemec, K. Antos, P. Kristián, A. Štullerová, V. Knoppová, and P. Nemec, Jr., Appl. Microbiol., 15, 701 (1967); C is MIC. + From R. A. Cutler, E. B. Cimjotti, T. J. Okolowick, and F. Wetteran, Soap Chem. Spec., 43, 102 (1967); C is minimum fungistatic or fungicidal concn. " From W. B. Geiger, Arch. Biochem., 16, 423 (1948); activity is expressed in relative units, not in concn terms.  $\sigma \sigma^*$  of C<sub>6</sub>H<sub>5</sub> was used for  $\sigma^*$  of 4-H<sub>2</sub>NC<sub>6</sub>H<sub>4</sub> and  $\sigma^*$  of C<sub>6</sub>H<sub>5</sub>CO for that of XC<sub>6</sub>H<sub>4</sub>CO. "From R. Crosse, R. McWilliam, and A. Rhodes, J. Gen. Microbiol., 34, 51 (1964); activity is rel to griseofulvin. \* These points not included in derivation of final equation. \* From G. A. Carter, J. L. Garraway, D. M. Spencer, and R. L. Wain, Ann. Appl. Biol., 51, 135 (1963); C is ED<sub>50</sub> in spore germination test. \* From M. Huppert, Antibiol. Chemother., 7, 29 (1957); C is concn causing complete inhib. <sup>aa</sup> From D. Vlachova and L. Drobnica, Collect. Czech. Chem. Commun., 31, 997 (1966); C is ED<sub>50</sub>. <sup>46</sup> From C. Klarman, L. W. Gates, V. A. Shternov, and P. H. Cox, J. Amer. Chem. Soc., 55, 4657 (1933). <sup>40</sup> See z. <sup>4d</sup> From F. A. Barkley, G. W. Mast, G. F. Grail, L. E. Tenenbaum, F. E. Anderson, F. Leonard, D. M. Green, J. J. D. Hart, D. P. Kronish, S. Yohimura, and O. L. Ittensohn, Antibiot. Chemother., **6**, 554 (1956); C is a fungistatic concn. "From D. B. Reisner and P. M. Borick, J. Amer. Pharm. Ass., **44**, 149 (1955); C is lowest concn showing no growth. <sup>1/</sup> From N. E. Rigler and G. A. Greathouse, Amer. J. Bot., **27**, 701 (1940); C is concn causing com-plete inhib. <sup>20</sup> From J. Hata, M. Tsurukawa, and M. Kakuma, Tanabe Seiyaku Kenkyu Nempo, **1**, 32 (1956); Chem. Abstr., **51**, 5191c (1957); C is min fungistatic concn. <sup>M</sup> From G. Weitzel and E. Schraufstätter, Z. Physiol. Chem., **285**, 172 (1950); C is min effective concn. *ii* From T. Kosuge, H. Okeda, Y. Teraishi, H. Ito, and S. Kosaka, Yakugaku Zasshi, **74**, 819 (1954). *ii* From E. Klarman, V. A. Shternov, and L. W. Gates, J. Amer. Chem. Soc., **55**, 2576 (1933); *PC'* is molar phenol coeff. *ik* From F. M. Berger, C. V. Hubbard, and B. J. Ludwig, Appl. Microbiol., **1**, 146 (1953); C is min fungistatic concn. *ii* From D. V. Carter, P. T. Charlton, A. H. Fenton, A. B. T. Chem. Soc., **55**, 2576 (1933); *PC'* is molar phenol coeff. J. R. Housey, and B. Lessel, J. Pharm. Pharmacol., 10, Suppl., 149T (1958); C is min inhib to content, <sup>mm</sup> From R. Woodside, M. Zief, and G. Sumrell, Antibiot. Chemother., 9, 470 (1959); C is min inhib content. <sup>mn</sup> See b. <sup>eo</sup> From I. F. Brown and H. D. Sisler, Phytopathology, 50, 830 (1960); C is ED<sub>50</sub>. <sup>pp</sup> See s. <sup>eo</sup> From R. W. Finholt, M. Weeks, and C. Hathaway, Ind. Eng. Chem., 44, 101 (1952); C is concn inhib radial growth. "From D. Ghosh, J. Med. Chem., 9, 423 (1966); C is ED<sub>50</sub>. \* Experimentally determined values.

eralizations can be formulated from this initial effort which we believe will be of help in designing new studies.

## Methods

The constants used in the regression analyses, along with the experimental data, are given in Table I. All  $\log P$  values are

for the *n*-OctOH-H<sub>2</sub>O system. The indicated values were detd experimentally. The other values were calcd according to additive principles.<sup>15-18</sup> Biological response was, in most cases, expressed as log 1/C where C is the molar concn required to produce a standard effect (*e.g.*, inhibition of spore germination by 50%). In a few cases, molar phenol coefficients (*PC'*) or relative molar activity (*RBR*) were used. In some examples the slide germination test was used, and we have expressed biological response in terms of log 1/µmole cm<sup>2</sup>.

The Hammett  $\sigma$  constants were taken from Jaffe's<sup>19</sup> compilation unless otherwise stated. In a few instances  $\sigma_p$  was used to approximate  $\sigma_o$  when the latter values were not available. Taft's polar constant,  $\sigma^*$ , and values for his steric parameter,  $E_s$ , were taken from Leffler and Grunwald's book.<sup>20</sup>

For calcn of log P it was necessary to measure the  $pK_a$  of 2methylglyoxalidine (2-methylimidazoline). For this purpose the procedure of Albert and Serjeant<sup>21</sup> was followed using a Beckman Model 76 pH meter with an expanded scale. The 2methylimidazoline was prepd by the method of Chitwood and Reid.<sup>22</sup> In this prepn a reaction temp of 290-300° was found to be necessary rather than 270° reported by Chitwood and Reid. The  $pK_a$  at 30° was found to be 10.78 ± 0.04. The  $pK_a$ value for the N(HOCH<sub>2</sub>CH<sub>2</sub>) derivative of 2-methylimidazoline was 9.6.

For calcn of partition coefficients the following assumptions have been made:

Table Ia.—Log *P* was measured for benzoquinone (0.20  $\pm$  0.04) and 1,4-naphthoquinone (1.78  $\pm$  0.01). To these values the following constants from the benzene system<sup>15</sup> were added to obtain log *P*:  $\pi_{\rm Cl}$ , 0.71;  $\pi_{\rm Ch}$ , 0.50;  $\pi_{\rm OII}$ , -0.67. For example, log *P*(3,6-dihydroxy-2,5-dichlorobenzequinone) = log *P*(benzoquinone) +  $2\pi_{\rm OI}$  +  $2\pi_{\rm Cl}$  = 0.20 - 1.34 + 1.42 = 0.28.

**Table Ib.**—For alkylpyridinium salts, the octyl derivative was measured and used as a reference for the other members. The Br<sup>-</sup> and Cl<sup>-</sup> were assumed to have about equal log P values. The value of 0.5 was added or subtracted for each CH<sub>2</sub> unit. Since it is, presumably, the ion pair which is partitioned into the octanol phase, the P values in this set are *apparent* partition coefficients. The partition coefficient for the higher members of this series may be somewhat lower than the calcd values because of intramolecular hydrophobic interaction. Log P for the higher members is extremely difficult to measure because of possible micelle formation at different concus.

**Table Ic.**—Log P has been calcd by adding  $\pi_{\rm R}$  to the log P of  $-0.66 \pm 0.02$  found for ethylenethiourea.

**Table Id.**—Log *P* for 2-methylimidazoline was found to be  $0.52 \pm 0.01$ . For the 1-hydroxyethyl-2-methylimidazoline, log *P* is  $0.04 \pm 0.07$ . Log *P* for this deriv was also measured in 0.1 *N* HCl and found to be  $-1.93 \pm 0.12$  for the ion pair. We have used log *P* values for hydrochlorides in Table Id. We have assumed that those molecules without the HOCH<sub>2</sub>CH<sub>2</sub> function show the same difference in log *P* (1.97) as the hydroxyethyl derivs. Thus log  $P_{\rm A} = \log P_{\rm B} - 1.97 + \pi_{\rm Cla}H_{33} + \pi_{\rm Cl}H_{\rm B} =$ 



0.52 - 1.97 + 8.00 + 2.00 = 8.55. It is assumed for the H<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>-contg deriv that only 1 of the basic nitrogens is protonated and that  $\pi_{\rm NH_2} \cong \pi_{\rm OH}$ . Hence log P for this deriv is taken to be the same as that for the corresponding HO deriv. The difference between log  $P_{\rm C4H_9NH_2}$  and log  $P_{\rm C4H_9OH}$  is only 0.03 log units.

(15) T. Fujita, J. Iwasa, and C. Hansch, J. Amer. Chem. Soc., 86, 5175 (1964).

(17) C. Hansch and S. M. Anderson, J. Org. Chem., 32, 2583 (1967).

(18) C. Hansch, J. E. Quinlan, and G. L. Lawrence, *ibid.*, **33**, 347 (1968).

(19) H.H. Jaffé, Chem. Rev., 53, 191 (1953).

(20) J. E. Leffler and E. Grunwald, "Rates and Equilibria of Organic Reactions," Wiley, New York, N. Y., 1963.

(21) A. Albert and F. P. Serjeant, "Ionization Constants of Acids and Bases," Wiley, New York, N. Y., 1962, p 37.

(22) H. C. Chitwood and E. E. Reid, J. Amer. Chem. Soc., 57, 2424 (1935).

**Table Ie.**—For this set the log P reference compd is N-ethyl- $\alpha$ -bromoacetamide of log P 0.34  $\pm$  0.05. I.og P for the cyclohexyl deriv was calcd as follows

$$\Delta \log P = \log P(\text{BrCH}_2\text{CONHC}_6\text{H}_{11}) - \log P(\text{BrCH}_2\text{CONHEt})$$
$$\Delta \log P = \pi_{\text{C}_6\text{Hit}} - \pi_{\text{Et}} = 2.51 - 1.00 = 1.51$$

 $\log P(\text{BrCH}_2\text{CONHC}_6\text{H}_{\text{II}}) = \log P(\text{BrCH}_2\text{CONHE}_t) +$ 

 $\Delta \log P = 0.34 + 1.51 = 1.85$ 

**Table If.**—Hexanoic acid was used as the reference acid. Log P for the un-ionized form is 1.90, while log P for sodium hexanoate is -2.20.

Table Ig,h.—Phenol log P values from ref 15 were employed. The value of 2.13 has been employed for C<sub>6</sub>H<sub>5</sub>. Subsequent work has shown that this may be about 0.1 unit too high; however, this is not of consequence for our present purposes. Errors in the biol data are at least of this order.

**Table II.**—Benzyl isothiocyanate (log P = 2.83) is the reference compd for this set.  $\pi_X$  values used to calc log P for the derives are from the phenoxyacetic acid series.

Table Ij.—The apparent log P for the reference molecule, decyldimethylbenzylammonium bromide, is -0.08.

**Table Ik.**—Log P for pyrimidine was found to be  $-0.40 \pm 0.04$ . To this value was added that of the substituted apilines.<sup>15</sup>



For example,  $\log P_{\rm C} = \log P_{\rm D} + 2 \log P({\rm H_2NC_6H_4NO_2-}p)$ , we have used  $\log P$  from *p*-nitroaniline rather than PhNH<sub>2</sub> to account for the inductive effect of the *p*-nitro groups on the lonepair electrons of the NH units. Where  $\log P$  values for aniline derives were missing, these were calcd using  $\log P$  (aniline) and  $\pi$  values from the phenol system.

**Ta**ble II.—The basic reference molecule, is phenyl vinyl ketone; log  $P = 1.88 \pm 0.03$ . The value of the benzoyl function was found as follows: log  $P_{acetophenone} - \pi_{CH_3} = 1.58 - 0.50 = 1.08$  $= \pi_{C_6H_6CO}$ .  $\pi_X$  was taken from the benzene system.<sup>16</sup> The value for Cl attached to a vinyl function<sup>9</sup> is 0.62. Our approach for this set is illustrated as follows: log P(dibenzoyldichloro $ethylene) = log <math>P(phenyl vinyl ketone) + \pi_{C_6H_6CO} + 2\pi_{Cl} =$ 1.88 + 1.08 + 1.24 = 4.20.

**Table Im.**—The value of  $2.18 \pm 0.04$  for griseofulvin constituted the reference value for this set.  $\pi_{\rm X}$  for the halogens are Cl = 0.39; Br = 0.60; I = 1.00. These are aliphatic  $\pi$  values since a set is not available for the  $\alpha,\beta$ -unsatd ketone system.

**Table In.**— $\pi$  values of 0.5 were used for CH<sub>2</sub> and CH<sub>3</sub>. The value of the cyclic CH<sub>2</sub> is taken as 0.41. For a branched chain we have subtracted 0.2 unit;  $\pi_{i-Bu} = \pi_{Bu} - 0.20 = 2.00 - 0.20 = 1.80$ .

Values in Table Io,p were calcd as in Table If.

Table Ip.—The value of 0.34 for PrOH was used as the standard.

Table Iq.—The reference molecule, phenyl isothiocyanate, has a measured log P of  $3.28 \pm 0.05$ . The values used for the derivs are from the benzene system. The value for the CH== CHCH==CH moiety was taken<sup>23</sup> as 1.35.

Table Ir.—PhOH values<sup>15</sup> were used for log P calcus.

Table Is.—The value for the parent member of the series, methyl 4-hydroxybenzoate, was obtained by adding  $\pi \operatorname{cooch}_3 = -0.01$  to log  $P_{\text{phenol}} = 1.46$ .

Table It.—The basic molecule for the calcu of these partition coefficients was  $(CH_3)_2NCH_2CH_2N(CH_3)_2$  (un-ionized) of log  $P = 0.30 \pm 0.05$ . No attempt was made to measure log P for the protonated form of these compds. It seems likely that the monoprotonated form would prevail in the buffer ~pH 7.0.

**Table 1u.**—Log  $P(C_6H_6NHCH_2C_6H_3$ -2-OH-5-Cl) = log  $P(aniline) + \pi_{CH_2} + \log P(4\text{-chlorophenol}) = 0.90 + 0.50 + 2.39 = 3.79$ . Log P values for the derivs were obtd by adding  $\pi$  values from PhNH<sub>2</sub> (where possible, and  $\pi$  from PhOH where not) to the parent compd. Log P values for this set may be

<sup>(16)</sup> J. Iwasa, T. Fujita, and C. Hansch, J. Med. Chem., 8, 150 (1965).

<sup>(23)</sup> C. Hansch, Proc. Int. Pharmacol. Meet., 3rd, 1966, 141 (1968).

about 0.5  $\log$  unit high because no account has been taken of possible folding.

Table Iv.—See Table If.

**Ta**ble Iw.—To log P 2.39 for 4-chlorophenol was added  $\pi_{2\text{-}CH_3}$  (0.68). The value of 3.07 for 2-methyl-4-chlorophenol was added to log P of the appropriate arom moiety; 0.65 for pyridine, 1.81 for thiophene, 1.32 for furan, and 3.37 for naphthalene to obtain log P for these respective derivs. For the 2-COC<sub>6</sub>H<sub>5</sub> deriv  $\pi$  was calcd as follows

$$\pi_{2\text{-COC}_6H_5} = \log P_{C_6H_5} - \pi_{CH_3} + \pi_{COCH_3}$$
$$= 2.13 - 0.50 - 0.11 = 1.52$$

 $\pi_{\rm CH(NHs)CHs} = \log P_{\rm benzylamine} - \log P_{\rm C6H6} +$ 

 $\pi_{\rm CH_3} + \pi_{\rm branching}$ 

$$= 1.09 - 2.13 + 0.50 - 0.20 = -0.74$$

**Table Ix.**—The appropriate value of  $\pi$  for R was added to log P of 0.13  $\pm$  0.05 found for pyrazole to give log P for the derives in this table.

Table Iy.—Log P was found as in Table If.

**Table Iz.**—I.og P was found as in Table Ig. The calcd log P values for the diortho-substituted phenol are probably a little low since shielding of the OH has not been considered.

**Table Ia'.**—I.og *P* values for the set are calcd from log *P* of  $0.70 \pm 0.01$  of the 1-Ph ether of glycerol and log *P* of  $1.16 \pm 0.01$  from 2-phenoxyethanol.  $\pi$  values from the phenoxyacetic acids were employed. Log  $P(2\text{-}CH_3C_6H_4OCH_2CHOHCH_3) = \log P(C_6H_5OCH_2CH_2OH) + \pi_{2}\cdot_{CH_3} + \pi_{CH_3} + \pi_{branching} = 1.16 + 0.68 + 0.50 - 0.20 = 2.14.$ 

**Table Ib'.**—Where possible,  $\log P$  for the benzyl alcohol deriv<sup>15</sup> was used. When this value was lacking,  $\pi_X$  from the benzene or the phenoxyacetic acid system was added to  $\log P$  of benzyl alcohol.

**Table Ic'**.—Log  $P(C_6H_3OCOC(CH_3)=CH_2 = \log P(C_6H_3OCO-CH_3) - \pi_{CH_3} + \pi_{CH_3}=CH_2 + \pi_{CH_3} + \pi_{branching} = 1.49 - 0.50 + 0.70 + 0.50 - 0.20 = 1.99$ . The log P values for the derives were calcd using  $\pi_X$  from the phenoxyacetic acid system.

Table Id'.—Log P values are based on dodecylguanidinium acetate.

**Ta**ble Ie'.—Log P values were calcd by adding the  $\pi$  value for the 2-alkyl moiety to 1.05 for the parent compd. The value of 1.05 for the N-dodecyl derivs comes from Table Ib.

Table If'.— $\pi_{CH_2}$  was added to the corresponding compd from Table Ii.

Table Ig'.—For these molecules, the apparent partition coefficient of  $n-C_{12}H_{\pm 5}NH_3+Cl^-$  (log  $P = 1.85 \pm 0.11$ ) was used as the reference. This was obtd by partitioning between 0.01 N HCl and octanol.

For the details of the testing procedures used in obtaining the relative biol activities of the different compds, the original work<sup>24-52</sup> should be consulted.

(31) H. G. Shirk and R. R. Corey, ibid., 38, 417 (1952).

(32) L. Drobnica, M. Zemanová, P. Nemec, K. Antós, P. Kristián, A. Štullerová, V. Knoppová, and P. Nemec, Jr., *Appl. Microbiol.*, **15**, 701 (1967).

- (33) R. A. Cutler, E. B. Cimijotti, T. J. Okolowick, and F. Wetterau, Soap Chem. Spec., 43, 102 1967. Presented at the 53rd Annual Meeting of the Chemical Specialties Manufacturers Association, Hollywood Beach, Florida, 1966.
  - (34) W. B. Geiger, Arch. Biochem., 16, 423 (1948).
- (35) G. A. Carter, J. L. Garraway, D. M. Spencer, and R. L. Wain, Ann.

Appl. Biol., 51, 135 (1963).
(36) M. Huppert, Antibiot. Chemother., 7, 29 (1957).

(37) D. Vlachova and L. Drobnica, Collect. Czech. Chem. Commun., 31, 997 (1966).

#### **Results and Discussion**

The object of this survey was to uncover as many self-consistent sets of congeners acting on different fungi as possible. At this stage of the development of *quantitative* structure-activity correlations, we sorely need more equations correlating relatively simple systems so that some of the A B C's of quantitative structure-activity relationship work can be established before going on to more difficult problems. The large amount of work done with microorganisms *in vitro* appears to be a good area in which to gain experience before, say, attacking difficult stereochemical problems in whole animals.

The equations obtained in Table II can be compared with those obtained for hemolysis of red cells<sup>53</sup> and those for antibacterial action. In Table IIa are assembled those equations in which antifungal activity is linearly dependent on the single variable,  $\log P$ , and in Table IIc are the structure-activity relationship equations parabolically dependent upon only this variable. The intercepts of such equations are useful parameters of reference for comparing the activity of different sets of congeners acting on totally different systems. For example, we have recently shown that 15 different sets of congeners causing hemolysis of red cells yield linear correlations of log 1/C vs. log P having a mean slope of  $0.93 \pm 0.17$ . The small standard deviation (0.17) was unexpected for work from many different laboratories employing different kinds of red cells. For 7 sets of neutral compounds the mean value and standard deviation of the intercept was  $-0.09 \pm 0.23$ . Using this information, we can construct eq 57 for our expectation of membrane per-

$$\log \frac{1}{C} = 0.93 \ (\pm 0.17) \ \log P \ - \ 0.09 \ (\pm 0.23) \tag{57}$$

turbation by more or less neutral molecules such as alcohols, esters, ketones, phenols, etc. Of course the intercept of eq 57 can be made to vary somewhat by the kind of hemolysis one elicits (e.g., 100%, 50%, etc.) as well as the time of the experiment, temp, etc. The value of the intercept is determined by the sensitivity of the test and the intrinsic pharmacophoric

- (39) D. B. Reisner and P. M. Borick, J. Amer. Pharm. Ass., 44, 149 (1955).
  - (40) N. E. Rigler and G. A. Greathouse, Amer. J. Bot., 27, 701 (1940).
- (41) J. Hata, M. Tsurukawa, and M. Kakuma, Tanabe Seiyaku Kenkyu Nempo, 1, 32 (1956); Chem. Abstr., 51, 5191c (1957).
- (42) G. Weitzel and E. Schraufstätter, Z. Physiol. Chem., 285, 172 (1950).
  (43) T. Kosuge, H. Okeda, Y. Teraishi, H. Ito, and S. Kosaka, Yakugaku Zasshi, 74, 819 (1954).
- (44) E. Klarmann, V. A. Shternov, and L. W. Gates, J. Amer. Chem. Soc., 55, 2576 (1933).
- (45) F. M. Berger, C. V. Hubbard, and B. J. Ludwig, Appl. Microbiol., 1, 146 (1953).
- (46) D. V. Carter, P. T. Charlton, A. H. Fenton, J. R. Housley, and B. Lessel, J. Pharm. Pharmacol., 10, Suppl., 149T (1958).
- (47) E. Woodside, M. Zief, and G. Sumrell, Antibiot. Chemother., 9, 470 (1959).
  - (48) I. F. Brown and H. D. Sisler, Phytopathology, 50, 830 (1960).
- (49) R. W. Finholt, M. Weeks, and C. Hathaway, Ind. Eng. Chem., 44, 101 (1952).
- (50) D. Ghosh, J. Med. Chem., 9, 423 (1966).
- (51) R. Crosse, R. McWilliam, and A. Rhodes, J. Gen. Microbiol., 34, 51 (1964).
- (52) F. A. Barkley, G. W. Mast, G. F. Grail, L. E. Tenenbaum, F. E. Anderson, F. Leonard, D. M. Green, J. J. D. Hart, D. P. Kronish, S. Yohi-
- mura, and O. L. Ittensohn, Antibiot. Chemother., 6, 554 (1956).
- (53) C. Hansch and W. R. Glave, Mol. Pharmacol., in press.

<sup>(24)</sup> R. G. Owens, Contrib. Boyce Thompson Inst., 17, 273 (1953).

<sup>(25)</sup> J. C. LoCicero, D. E. H. Frear, and H. J. Miller, J. Biol. Chem., 172, 689 (1948).

<sup>(26)</sup> R. G. Ross and R. A. Ludwig, Can. J. Bot., 35, 65 (1967).

<sup>(27)</sup> R. II. Wellman and S. E. A. McCallan, Contrib. Boyce Thompson Inst., 14, 151 (1946).

<sup>(28)</sup> J. M. Leonard and V. L. Blackford, J. Bacteriol., 57, 339 (1947).

<sup>(29)</sup> O. Wyss, B. J. Ludwig, and R. R. Joiner, Arch. Biochem., 7, 415

<sup>(1945).
(30)</sup> H. G. Shirk, R. R. Corey, and P. L. Poelma, Arch. Biochem. Biophys.,
32, 392 (1951).

<sup>(38)</sup> E. Klarmann, L. W. Gates, V. A. Shternov, and P. H. Cox, J. Amer. Chem. Soc., 55, 4657 (1933).

### Table II

| Organism                       | Type compound                                              | Action            | $k_1$                | $k_2$                | $n^a$ | $r^b$ | s <sup>c</sup> | Eq No. | Data in<br>Table I |
|--------------------------------|------------------------------------------------------------|-------------------|----------------------|----------------------|-------|-------|----------------|--------|--------------------|
| Candida albicans               | HOC <sub>6</sub> H <sub>5</sub> COOR                       | $\mathbf{I}$ nhib | $0.704~(\pm 0.20)$   | $0.954~(\pm 0.62)$   | 7     | 0.971 | 0.205          | 3      | Is                 |
| Trychophyton<br>mentagrophytes | Diamines                                                   | Inhib             | $0.527~(\pm 0.13)$   | $1.366~(\pm 0.71)$   | 22    | 0.890 | 0.504          | 4      | It                 |
| C. albicans                    | Diamines                                                   | $\mathbf{Inhib}$  | $0.342~(\pm 0.10)$   | $1.742(\pm 0.57)$    | 19    | 0.862 | 0.399          | 5      | $\mathbf{It}$      |
| Aspergillus niger              | RCOO-                                                      | $\mathbf{K}$ ill  | $0.671 \ (\pm 0.16)$ | $2.075~(\pm 0.23)$   | 8     | 0.974 | 0.175          | 6      | If                 |
| T. interdigitale               | RCOO-                                                      | $\mathbf{K}$ ill  | $0.757~(\pm 0.05)$   | $2.431 (\pm 0.08)$   | 14    | 0.994 | 0.133          | 7      | If                 |
| A. niger                       | RCOO-                                                      | Inhib             | $0.545~(\pm 0.13)$   | $2.658~(\pm 0.23)$   | 10    | 0.959 | 0.212          | 8      | If                 |
| Penicillium<br>cyclopium       | $\rm XC_6H_4CH_2CH_2NCS$                                   | Inhib             | $0.462(\pm 0.15)$    | $2.789(\pm 0.57)$    | 6     | 0.974 | 0.060          | 9      | If'                |
| A. niger                       | XC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> NCS         | Inhib             | $0.545 \ (\pm 0.17)$ | $3.283 (\pm 0.59)$   | 13    | 0.901 | 0.148          | 10     | Ii                 |
| Monilia<br>fructicola          | Quinones                                                   | Kill              | $0.877~(\pm 0.43)$   | $3.530 (\pm 0.80)$   | 10    | 0.859 | 0.579          | 11     | Ia                 |
| A. niger                       | $XC_6H_4CH_2CH_2NCS$                                       | Inhib             | $0.363 (\pm 0.45)$   | $3.584(\pm 1.7)$     | 6     | 0.745 | 0.179          | 12     | If'                |
| A. oleracea                    | Quinones                                                   | Kill              | $0.731~(\pm 0.41)$   | $3.741 \ (\pm 0.77)$ | 10    | 0.825 | 0.555          | 13     | Ia                 |
| C. albicans                    | 2,4-Bis(XC <sub>6</sub> H <sub>4</sub> NH)-<br>pyrimidines | Inhib             | <b>0.497</b> (±0.15) | $4.149 (\pm 0.35)$   | 8     | 0.957 | 0.223          | 14     | Ik                 |

# (a) Antifungal Activity Linearly Dependent on Log P; Log $1/C = k_1 \log P + k_2$

(b) Antifungal Activity Linearly Dependent on Log P and Electronic Effects; Log  $1/C = k_1 \log P + k_2 \sigma + k_3$ 

|                               |                                                   | · ·                               |                      |                    | es :               |       | -       |                |           |                            |
|-------------------------------|---------------------------------------------------|-----------------------------------|----------------------|--------------------|--------------------|-------|---------|----------------|-----------|----------------------------|
| Organism                      | Type compound                                     | Action                            | $k_1$                | $k_2$              | $k_3$              | $n^a$ | $r^{b}$ | s <sup>c</sup> | Eq<br>No. | Data i <b>n</b><br>Table I |
| Botyrtis allii                | Griseofulvin analogs                              | Curling<br>of hyphae <sup>d</sup> | $0.555(\pm 0.17)$    | 2.193 (±0.77)      | $-1.322(\pm 0.61)$ | 22    | 0.875   | 0.248          | 15        | Im                         |
| Aspergillus niger $+ 3$ molds | XC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> OH | Inhib                             | $0.582 (\pm 0.12)$   | $0.450 (\pm 0.32)$ | $1.117 (\pm 0.25)$ | 19    | 0.952   | 0.241          | 16        | Ib'                        |
| T. mentagrophytes $+$ 3 molds | Phenethyl ethers of<br>glycerol and glycol        | Inhib                             | 0.691 (±0.14)        | $0.428(\pm 0.51)$  | 1.213 (±0.36)      | 26    | 0.911   | 0.216          | 17        | Ia'                        |
| C. albicans                   | XC6H4NHCH2-0-ClC6H4OH                             | Inhib                             | $0.270 \ (\pm 0.18)$ | $0.962 (\pm 0.49)$ | $2.433~(\pm 0.77)$ | 8     | 0.982   | 0.111          | 18        | $\mathbf{Iu}$              |
| T. interdigitale              | XC6H4NHCH2-0-ClC6H4OH                             | Inhib                             | $0.339(\pm 0.37)$    | $0.572(\pm 1.0)$   | $3.026 (\pm 1.6)$  | 8     | 0.906   | 0.237          | 19        | Iu                         |
| Microsporum<br>audouini       | $XC_6H_4NHCH_2-0-ClC_6H_4OH$                      | Inhib                             | 0.236 (±0.16)        | $0.737~(\pm 0.44)$ | 3.535 (±0.69)      | 8     | 0.978   | 0.100          | 20        | Iu                         |

# (c) Antifungal Activity Parabolically Dependent on Log P; Log $1/C = k_1 (\log P)^2 + k_2 \log P + k_3$

|                  | (0, 1110                       | irungai riceivity    | 1 araboneany | 15 ependent e | . 10g 1, 10g 1/6 A | 1 (1081 ) 1 121081 | 1 .00 |       |       | Ea        | Data in                   |
|------------------|--------------------------------|----------------------|--------------|---------------|--------------------|--------------------|-------|-------|-------|-----------|---------------------------|
| Organism         | Type compound                  | Action               | <i>k</i> 1   | $k_{2}$       | k 3                | $\log P_0$         | $n^a$ | $r^b$ | .ş¢   | No.       | Table I                   |
| T. interdigitale | Alkylpyrazoles                 | Inhib                | -0.650       | 5.978         | $-9.334(\pm 8.8)$  | 4.6(4.3 - 5.4)     | 6     | 0.948 | 0.226 | 21        | Ix                        |
| Letinus lepideus | ROH                            | Inhib                | -0.601       | 4.271         | $-4.089(\pm 12.0)$ | 3.6                | 5     | 0.877 | 0.534 | 22        | $_{\rm Ip}$               |
| T. rosaceum      | Alkyl-4-chloro phenols         | $PC^{rd}$            | -0.114       | 1.680         | $-2.676(\pm 1.0)$  | 7.3 (6.2-11)       | 22    | 0.985 | 0.126 | 23        | $\mathbf{I}_{\mathbf{Z}}$ |
| A. niger         | $\alpha,\beta$ -Unsatd ketones | $\mathbf{Inhib}^{d}$ | -0.134       | 1.382         | -1.597 (±1.4)      | 5.1                | 19    | 0.866 | 0.413 | <b>24</b> | Il                        |

| C. albicans                  | Alkylbromo phenols                           | PC'd                     | -0.084 | 1.318  | $-0.885(\pm 0.67)$   | 7.8(6.2-15)     | 14        | 0.993 | 0.121 | 25        | $\mathbf{Ir}$          |
|------------------------------|----------------------------------------------|--------------------------|--------|--------|----------------------|-----------------|-----------|-------|-------|-----------|------------------------|
| A. solani                    | N-Alkylethylenethioureas                     | Inhib                    | -0.339 | 2.183  | $-0.290(\pm 1.9)$    | 3.2(2.8-9.8)    | 6         | 0.970 | 0.148 | <b>26</b> | $\mathbf{Ic}$          |
| C. albicans                  | ArNCS                                        | $\mathbf{I}$ nhib        | -0.192 | 1.909  | $0.555~(\pm 2.3)$    | 5.0(4.6-6.5)    | 10        | 0.936 | 0.104 | <b>27</b> | $\mathbf{Iq}$          |
| M. fructicola                | N-Alkylethylenethioureas                     | Inhib                    | -0.140 | 1.398  | $0.663(\pm 1.1)$     | 5.0             | <b>5</b>  | 0.999 | 0.045 | <b>28</b> | Ic                     |
| A. niger                     | Phenols                                      | $\mathbf{I}$ nhib        | -0.105 | 1.169  | $0.829~(\pm 0.59)$   | 5.5(5.1-6.4)    | <b>26</b> | 0.927 | 0.195 | 29        | $\mathbf{Ih}$          |
| T. gypseum                   | 2-Alkyl-4-chloro phenols                     | $\mathbf{I}$ nhib        | -0.103 | 1.316  | $1.182~(\pm 1.8)$    | 6.4             | 11        | 0.924 | 0.341 | 30        | Iw                     |
| G. cingulata                 | Imidazolines                                 | $\mathbf{I}$ nhib        | -0.069 | 0.965  | $1.443~(\pm 1.0)$    | 7.0(68.7)       | 15        | 0.875 | 0.500 | <b>31</b> | $\mathbf{Id}$          |
| A. solani                    | Imidazolines                                 | $\mathbf{I}$ nhib        | -0.076 | 0.937  | $1.891 \ (\pm 0.75)$ | 6.2(5.6-6.9)    | 15        | 0.910 | 0.363 | 32        | Id                     |
| Macrosporum<br>sarcinaeforme | Imidazolines                                 | Inhib                    | -0.073 | 0.896  | $2.093 (\pm 0.70)$   | 6.1 (5.6-6.8)   | 15        | 0.913 | 0.339 | 33        | Id                     |
| M. fructicola                | Imidazolines                                 | Inhib                    | -0.080 | 1.070  | $2.175(\pm 0.68)$    | 6.1(5.7-6.7)    | 14        | 0.946 | 0.324 | 34        | $\mathbf{Id}$          |
| C. albicans                  | RCOO-                                        | $\mathbf{I}$ nhib        | -0.636 | -1.541 | $2.149(\pm 0.34)$    | -1.21(-1.3-1.0) | 6         | 0.991 | 0.090 | 35        | Io                     |
| L. lepideus                  | RNH₃+                                        | $\mathbf{I}$ nhib        | -0.124 | 0.419  | $2.379~(\pm 0.73)$   | 1.7             | 6         | 0.903 | 0.281 | 36        | $\mathbf{Ig}$          |
| M. fructicola                | N-Alkylpyridinium halides                    | Kill <sup>d</sup>        | -0.156 | 0.780  | $2.383(\pm 0.16)$    | 2.5(2.2-3.0)    | 7         | 0.990 | 0.115 | 37        | $\mathbf{Ib}$          |
| Phytophthora<br>infestans    | N-Alkylpyridinium halides                    | Kill <sup>d</sup>        | -0.132 | 0.646  | $2.552~(\pm 0.19)$   | 2.4(23.2)       | 8         | 0.989 | 0.156 | 38        | Ib                     |
| A. oleracea                  | N-Alkylpyridinium halides                    | Kill <sup>d</sup>        | -0.166 | 0.718  | $2.577~(\pm 0.44)$   | 2.2(1.6-3.6)    | 7         | 0.973 | 0.295 | 39        | $\mathbf{Ib}$          |
| Venturia inaequales          | N-Alkylpyridinium halides                    | Killd                    | -0.158 | 0.636  | $3.067~(\pm 0.12)$   | 2(1.8-2.3)      | 8         | 0.995 | 0.098 | 40        | $\mathbf{Ib}$          |
| V. inaequales                | N-Dodecyl-2-R-<br>pyridinium Br <sup>-</sup> | Killd                    | -0.083 | 0.594  | $3.100(\pm 0.67)$    | 3.6 (3.1-11)    | 6         | 0.925 | 0.095 | 41        | Ie                     |
| A. niger                     | $C_6H_5CH_2N$ + $R(CH_3)_2 \cdot Cl^-$       | $\mathbf{K}\mathbf{ill}$ | -0.223 | 1.027  | $2.592~(\pm 0.83)$   | 2.3(1.5 - 4.0)  | 10        | 0.720 | 0.477 | 42        | Ij                     |
| A. niger                     | $C_6H_5CH_2N+R(CH_3)_2\cdot Cl^-$            | $\mathbf{Inhib}$         | -0.237 | 1.040  | 3.114(+0.26)         | 2.2(2.0-2.5)    | 11        | 0.947 | 0.224 | 43        | Ij                     |
| $T.\ mentagrophytes$         | $C_6H_5CH_2N$ + $R(CH_3)_2 \cdot Cl^-$       | $\mathbf{K}$ ill         | -0.164 | 1.059  | $3.232~(\pm 0.19)$   | 3.2(2.9 - 3.9)  | 11        | 0.983 | 0.166 | 44        | Ij                     |
| C. albicans                  | $C_6H_5CH_2N$ + $R(CH_3)_2 \cdot Cl^-$       | $\mathbf{I}$ nhib        | -0.264 | 1.358  | $3.236~(\pm 0.23)$   | 2.6(2.4-2.8)    | 11        | 0.978 | 0.199 | <b>45</b> | Ij                     |
| C. albicans                  | $C_6H_5CH_2N$ + $R(CH_3)_2 \cdot Cl^-$       | $\mathbf{K}$ ill         | -0.297 | 2.037  | $3.253~(\pm 0.28)$   | 2.2(2.1-2.5)    | 11        | 0.961 | 0.243 | 46        | Ij                     |
| $T.\ mentagrophytes$         | $C_6H_5CH_2N$ + $R(CH_3)_2 \cdot Cl^-$       | $\mathbf{I}$ nhib        | -0.160 | 1.055  | $3.294~(\pm 0.14)$   | 3.3(3.0 - 3.7)  | 11        | 0.992 | 0.119 | 47        | Ij                     |
| Phymatotrichum<br>omnivorum  | RCOO-                                        | Inhib                    | -0.028 | -0.078 | $3.354~(\pm 0.27)$   | -0.18 (-1.0-10) | 15        | 0.845 | 0.351 | 48        | Iv                     |
| T. interdigitale             | RCOO-                                        | $\mathbf{Inhib}$         | -0.099 | 0.328  | $3.500~(\pm 0.16)$   | 1.6(0.7-5.0)    | 14        | 0.972 | 0.216 | 49        | If                     |
| T. purpureum                 | RCOO-                                        | $\mathbf{I}$ nhib        | -0.059 | 0.460  | $3.754~(\pm 0.12)$   | 4.2(2.3-11)     | 15        | 0.985 | 0.166 | 50        | If                     |
| T. gypseum                   | RCOO-                                        | Inhib                    | -0.118 | 0.236  | $4.254 (\pm 0.15)$   | 1.0(0.6-2.0)    | 15        | 0.884 | 0.205 | 51        | $\mathbf{I}\mathbf{y}$ |
| Stemphylium<br>pastorianus   | Alkylguanidine acetates                      | Inhib                    | -0.181 | 0.706  | $4.877~(\pm 0.37)$   | 1.9(1.5-2.2)    | 6         | 0.987 | 0.069 | 52        | Id'                    |
| M. fructicola                | Alkylguanidine acetates                      | Inhib                    | -0.129 | 0.517  | $4.844~(\pm 0.17)$   | 2.0(1.8-2.2)    | 6         | 0.994 | 0.031 | 53        | Id'                    |

(d) Antifungal Activity Parabolically Dependent on Log P and Linearly Dependent on Electronic Character; Log  $1/C = k_1 (\log P)^2 + k_2 \log P + k_3 \sigma + k_4$ 

|                | -                       | -             | • •                   | -               |                    |                    | ,                      |          | -              |            |           |                    |
|----------------|-------------------------|---------------|-----------------------|-----------------|--------------------|--------------------|------------------------|----------|----------------|------------|-----------|--------------------|
| Organism       | Type compound           | Action        | $k_1$                 | kç              | k3                 | k4                 | Log $P_0$ or $\pi_0$   | $n^{a}$  | r <sup>b</sup> | s¢         | Eq<br>No. | Data in<br>Table I |
| A. niger       | Phenols                 | Inhib         | -0.190                | 1.859           | $0.627~(\pm 0.39)$ | $-0.092(\pm 0.86)$ | 4.9(4.3-6.3)           | 18       | 0.975          | 0.160      | 54        | $\mathbf{Ig}$      |
| H. anomala     | Phenyl<br>methacrylates | Inhib         | -0.102                | 1.234           | $-0.880(\pm 0.75)$ | 0.878 (±0.93)      | 6.0 (4.8-7.3)          | 10       | 0.958          | 0.069      | 55        | Ie                 |
| B. cinerea     | RR'NCSSNa+              | Inhib         | -0.282                | -0.207          | $-1.531(\pm 1.1)$  | $5.063(\pm 1.4)$   | $-0.4^{e}$             | 9        | 0.921          | 0.278      | 56        | $\mathbf{In}$      |
| 4 Number of de | to points used in deriv | ving equation | <sup>b</sup> Correlat | ion coefficient | Standard doviation | from regression dA | ativity given in terms | of relat | ive biologic   | I response | not ec    | mnereh             |

<sup>a</sup> Number of data points used in deriving equation. <sup>b</sup> Correlation coefficient. <sup>c</sup> Standard deviation from regression. <sup>d</sup> Activity given in terms of relative biological response; not comparable with  $\log 1/C$ . <sup>c</sup>  $\pi$  employed in this equation instead of  $\log P$ .

character of the set of congeners under consideration. The only equations in Table IIa which are comparable to eq 57 are eq 3 and 9–13. Equations 4–8 are for molecules which will be largely ionized under the experimental conditions. For the neutral molecules only one set is close in form to eq 57; that is eq 3 for the phenols. The confidence intervals on the slope, and especially the intercept of eq 3, are rather large. In fact, they essentially overlap with those of eq 57, indicating the considerable similarity in the two processes. This can be taken as one small piece of evidence that the fungicidal action of phenols is through membranc perturbation.

interval on the intercept of eq 30 is too large to allow its use in fruitful comparisons.

Unfortunately, most of the enormous amount of work done with phenols on bacteria has been reported in terms of phenol coefficients and hence is not directly comparable with log 1/C data. Exceptions to this are the results embodied in eq 59 and 60. The intercepts and coefficients with log P in eq 59 and 60 are quite close to those of eq 3 and 58, again underscoring the close relationship between hemolysis, antibacterial, and antifungal action of phenols and alcohols.

A more direct comparison can be made via eq 58.

These results can be compared *via* our extrathermodynamic equations<sup>53</sup> with other kinds of processes

|                                                                                                        | n           | r     | 8     |      |
|--------------------------------------------------------------------------------------------------------|-------------|-------|-------|------|
| $\log \frac{1}{C} = 0.78 \ (\pm 0.16) \ \log P + 0.21 \ (\pm 0.20)$                                    | 8           | 0.997 | 0.037 | (58) |
| Phenols Acting on Pseudomonas aeruginosa <sup>1</sup>                                                  | 4           |       |       |      |
| $\log \frac{1}{C} = 0.68 \ (\pm 0.24) \ \log P \ - \ 0.92 \ (\pm 0.72) \sigma \ + \ 0.27 \ (\pm 0.49)$ | 21          | 0.847 | 0.222 | (59) |
| Alcohols Acting on Staphylococcus aureus <sup>14</sup>                                                 |             |       |       |      |
| $\log \frac{1}{C} = 0.65 \ (\pm 0.12) \ \log P + 0.06 \ (\pm 0.08)$                                    | 9           | 0.979 | 0.087 | (60) |
| ROH Cansing $-5$ mV Change in Rest Potential of L                                                      | obster Axor | 1     |       |      |
| $\log \frac{1}{C} = 0.86 \ (\pm 0.16) \ \log P \ - \ 0.10 \ (\pm 0.13)$                                | 5           | 0.995 | 0.082 | (61) |
| ROH Toxicity to Red Spider                                                                             |             |       |       |      |
| $\log \frac{1}{C} = 0.69 \ (\pm 0.09) \ \log P + 0.16 \ (\pm 0.08)$                                    | 14          | 0.979 | 0.087 | (62) |
| 100% Inhibition of Frog Heart by Misc Neutral Co                                                       | onipounds   |       |       |      |
| $\log \frac{1}{\ell} = 0.93 \ (\pm 0.09) \ + \ 0.11 \ (\pm 0.12)$                                      | 28          | 0.975 | 0.182 | (63) |
| Benzyldimethylalkylanmonium Chlorides Inhibiting                                                       | S. aureus⁵  | 3     |       |      |
| $\log \frac{1}{C} = -0.173 \; (\log P)^2 + 0.884 \log P + 2.956 \; (\pm 0.14)$                         | 45          | 0.898 | 0.288 | (64) |
| $\log P_0 = 2.6$                                                                                       |             |       |       |      |
| $\log \frac{1}{C} = 0.640 \ (\pm 0.09) \ \log P + 1.981 \ (\pm 0.85) E_{\rm R} + 0.767 \ (\pm 0.24)$   | 19          | 0.971 | 0.190 | (65) |
| $\log \frac{1}{C} = -0.264 \ (\log P)^2 + 1.592 \ \log P + 2.061 \sigma^* \ (\pm 1.8) +$               | 15          | 0.976 | 0.208 | (66) |
| $0.830E_{\rm s}~(\pm 0.30)~+~3.199~(\pm 0.40)$                                                         |             |       |       |      |
| $\log P_0 = 3.0 \ (2.8-3.2)$                                                                           |             |       |       |      |
| $\log \frac{1}{C} = 0.369 \ (\pm 0.13) \ \log P + 0.514 \ (\pm 0.32) \ E_{\rm s} + 3.366 \ (\pm 0.37)$ | 10          | 0.949 | 0.195 | (67) |

Phenols and Alcohols Causing Hemolysis of Human Red Cells

The similarity between eq. 58 and 3 is striking. Although the correlation of eq.3 is not as sharp as that of eq.58, it appears that a somewhat higher concentration of phenol or alcohol is required to cause hemolysis than is needed to inhibit *C. albicans*. Comparison of the intercepts of eq.3 and 58 with the more complex eq.29 and 54 shows reasonable agreement. The confidence as shown in eq 61-63. The one common mechanism which might be used to explain the great similarity in action of phenols and alcohols in hemolysis, narcotic action (as in eq 61-63), antibacterial action, and antifungal action is that of membrane perturbation. This need not necessarily mean rupture as in hemolysis. Since an extensive oxidative enzyme system is part of the membrane structure, disturbing the membrane structure could easily turn off or diminish this vital system.

Turning now to the other neutral molecules of Table IIa, higher intercepts are found for the quinones and arylalkyl isothiocyanates. The average intercept for the quinones is 3.6 and that for the isothiocyanates is 3.2. This indicates their much greater intrinsic toxicity. Since these equations are linear in  $\log P$ , more toxic members of each of these series could be prepared by making more lipophilic derivatives. The aliphatic isothiocyanate function is much more toxic than the aromatic analog. The intercept of eq 27 is what one expects to find for the nonspecific membrane perturbation discussed above.

Before considering the acids of Table IIa in which either the ionic or neutral form of the molecule may be the active species, it is important to consider the completely ionized benzyl ammonium derivatives of eq 42-47. Unfortunately, the pyridinium compounds of eq 37-41 cannot be compared with respect to intercepts since these data are not on the log 1/C scale. For the three sets of ammonium compounds killing fungi, the mean intercept is 3.03. For the 3 sets inhibiting fungi, the mean intercept is 3.21. For our purpose, the difference between the killing and inhibiting concentration is small and we shall ignore it by taking the mean and standard deviation for the 6 sets as  $3.12 \pm$ 0.26. The mean values for these 2 parameters can be compared with results obtained by quaternary ammonium compounds of 3 types causing hemolysis of red

cells.<sup>53</sup> For 6 such equations we find a mean intercept of  $2.91\pm0.21$ . This is very close indeed to the value for fungicidal activity.

The antibacterial action of a large set of quaternary ammonium compounds of varying alkyl chain length and different ring substituents is summarized in eq 64. The intercept of eq 64 agrees very well with the average found for hemolysis as well as that found for antifungal action.

Since the action of the benzylammonium compounds against fungi appears to parallel their hemolytic action, one might expect the same to be true for fatty acids. For this reason we have used  $\log P$  values for the ion pair, RCOONa, in correlating these compounds instead of log P for the neutral RCOOH. Equation 35 will not be considered with the others since this work was done at pH 5.6 rather than the pH 6.5 employed in the other work. Two equations (6 and 7) are for killing action and have, as expected, a lower mean intercept of 2.3 while five equations (8, 48-51) are for inhibitory action and have a mean intercept of  $3.5 \pm 0.7$ . The intercepts for 2 sets of acids, RCOOH and RCHBr-COOH, causing hemolysis<sup>53</sup> are 2.60 and 2.58, respectively. These figures are closer to the intercepts for the killing log 1/C equations, indicating that killing action more closely resembles hemolysis.

There are a number of equations in Table II (15, 23-25, 37-40, 56) which cannot be compared with the others either because activity could not be placed on the  $\log 1/C$  scale or because  $\pi$  values had to be used instead of  $\log P$  values. In addition to these, eq 4 and 5 for the

diamines are not comparable to the others because under test conditions these molecules are protonated and we have had to employ  $\log P$  values for the neutral compounds. It seems most likely that it is the protonated amine which is the pharmacophore.

From a practical point of view, one of the most interesting sets of data in Table II is that correlated by eq 15 for the griseofulvin analogs. These derivatives cannot be compared directly with the other sets of Table II in terms of intercepts since the activity of these compounds was expressed on a relative basis rather than as log 1/C. Although the correlation with this group of very complex molecules is not as sharp as one would like, it is reasonable considering the fact that we do not have ideal substituent constants. Suitable steric parameters are not available, and for  $\sigma$  we have had to assume that  $\sigma_{\rm p}$  for aromatic functions is suitable for the groups (X, Table Im) directly conjugated with the carbonyl group as well as the ether function. A finding of importance is the large coefficient with  $\sigma$ , indicating that activity is highly dependent on the electron-attracting groups  $\alpha$  to the carbonyl function.  $\alpha,\beta$ -Unsaturated ketones react via addition with mercaptans and inactivate enzymes such as succinic, alcohol, and triosephosphate dehydrogenases and urease which have essential SH groups.<sup>34</sup> It is known that griseofulvin kills young and actively metabolizing cells but not the older, more dormant elements.<sup>54</sup> Also, it has been hypothesized that the antifungal activity of griseofulvin is due at least in part to its inhibition of nucleic acid synthesis at steps either prior to or at the polymerization stage. The partial reversal of growth inhibition by purines and purine derivatives has led to the suggestion that griseofulvin may be a structural analog of a purine nucleotide.<sup>55</sup> Interferences with the replication mechanism of fungal cells have also been suggested, although at present no clear answer to the mechanism of action is generally accepted.<sup>56</sup> The spiro linkage has also attracted attention in structure-activity work.<sup>57</sup> Since the role of  $\sigma$  in our analysis supports the idea of reaction of the  $\alpha,\beta$ -unsaturated ketone linkage with an SH group, it would be interesting to investigate the interaction between griseofulvins and SH-possessing enzymes involved in the synthesis of intermediates for nucleic acids; e.g., inosinate dehydrogenase.<sup>58</sup>

The fact that activity for the set of griseofulvins at hand depends linearly on electron withdrawal and lipophilic character indicates that replacing X (Table Im) by functions such as  $CF_3$ ,  $SF_5$ , or  $C_6H_4CN$  should give derivatives with higher *in vitro* activity. In trying to get higher *in vivo* activity one should first establish log  $P_0$  from *in vivo* studies. For a variety of drugs acting *in vivo*, log  $P_0$  has been found to be about 2. Griseofulvin itself has log P of 2.18.

The benzyl alcohols of eq 16 also show a modest degree of specificity. Recent work with benzyl derivatives<sup>59</sup> indicates that for this function one often finds better correlations in biological work using the radical parameter  $E_{\rm R}$  instead of  $\sigma$ . Making this change in eq 16, we obtain eq 65. The positive coefficient with the

- (54) H. Blank, D. Taplin, and F. J. Roth, Arch. Dermatol., 81, 667 (1960).
- (55) E. G. McNall, Antibiot. Annu., 1959-1960, 674 (1960).
- (56) R. B. Angier, Annu. Rep. Med. Chem., 1966, 157 (1967).
- (57) H.Newman and R. B. Angier, J. Org. Chem., 31, 1462 (1966).
  (58) A. Hampton, J. Biol. Chem., 238, 3068 (1963).
- (59) C. Hansch and R. Kerley, J. Med. Chem., 13, 957 (1970).

 $E_{\rm R}$  term of eq 65 indicates that free radical stabilizing substituents yield more active derivatives.

The N-phenylbenzylamines of eq 18-20 show a rather high degree of specificity, in so far as the intercept is a measure of this property. The coefficients with the  $\log P$  terms in these equations are quite low, indicating that variation in  $\log P$  has less than half the usual effect on activity. Hence, although the equations are linear in  $\log P$ , not much increase in activity is to be expected by further increases in lipophilicity. The highest log P in this set is 5.41 and, from general experience with neutral molecules, it is rarely found that  $\log P_0$  is much above 6. In this set there are two pharmacophoric functions to consider. Is the phenol or the benzylamine function the active one? The intercepts of equations correlating the toxicity of phenols are usually in the range of 0.5-1.0. Therefore, the high activity appears to reside in the benzylamine moiety. Again our interest is drawn to the highly active benzylic hydrogens as a source of toxicity. Unfortunately, lack of  $E_{\rm R}$  constants and the small variation in the substituents studied prevent our study of this interesting point.

The benzyl function is also present in the isocyanates of eq 10. The isocyanate function has a much greater intercept than the benzyl alcohol, indicating the much greater toxicity of this function. The replacement of  $\sigma$ by  $E_{\rm R}$  or simply the addition of an  $E_{\rm R}$  term to eq 10 does not result in an improved correlation. This would seem to be the result of the fact that the toxic character of benzylic hydrogens is 2 orders of magnitude lower than the isocyanate function and that their activation might, if anything, lower activity via metabolic loss.

Lukens and Horsfall, in a recent study of antisporulants, made the interesting observation that phenoxyacetic acids inhibit glycolate oxidase of A. solani.60 Moreover, the inhibition closely paralleled the antisporulation activity. Both kinds of inhibition paralleled the  $\Sigma \pi$  for the substituents. Unfortunately, only 6 derivatives were tested and so little variation was made in the attached groups (all but one were polychloro compounds) that we cannot subject the set to regression analysis to see if the radical stabilizing ability of the substituent plays a discernible role. Since it has been possible to show<sup>60</sup> through substituent constant analysis that radical stabilizing substituents have pronounced effects on a number of oxidase reactions, it would be worthwhile to make such a study of the glycolate oxidase-phenoxyacetic acid interaction.

The most specific antifungal agents in Table IIa are the bisanilinopyrimidines of eq 14. The reason for the high specificity is not obvious. More insight could be gained by the study of a better selection of substituents. Adding a term in  $E_{\rm R}$  does result in considerable improvement ( $F_{1,5} = 3.9$ ;  $F_{1,5|\alpha,1} = 4.1$ ) in correlation but does not quite reach our arbitrary cutoff level of significance at  $\alpha \leq 0.1$ .

In Table IIc, the confidence interval on the alkylpyrazoles of eq 21 is extremely wide. Even so, it seems safe to say that little specificity resides in the pyrazole function.

Equations 31-34 with the imidazolines are interesting from the point of view of the intercepts. The mean for the 4 equations is  $1.93 \pm 0.3$ . For these combinations we have employed the log P for the hydrochloride

(60) R. J. Lukens and J. G. Horsfall, Phytopathology, 58, 1671 (1968).

since, because of their basicity, they would be essentially completely ionized under test conditions. The intercept for imidazolines is close to that of 2.4 found for simple aliphatic amines (eq 36). This would indicate no special toxicity for the heterocycle function. These intercepts can be compared with the value of 1.6 found for hemolysis<sup>53</sup> by RNH<sub>2</sub>·HCl. The agreement is close enough to suggest membrane perturbation as the cause of toxicity. This is supported by Rich and Horsfall's suggestion that alkylimidazolines disrupt the membrane permeability of Conidia. Miller, et al.,<sup>61</sup> have shown that spores of *Neurospora sitophila* accumulated a 10<sup>4</sup>-fold concentration of 2-heptadecylimidazoline from an aqueous solution of  $2 \mu g/ml$ . Our results would indicate that the high lipophilic character of this molecule is the primary driving force for its accumulation rather than any special kind of active transport.<sup>62</sup>

In Table IId are listed equations in which activity depends linearly on the electronic effect of the molecular modification and parabolically on  $\log P$ .

The dithiocarbaniates cannot be compared with the other sets because for these salts we have had to use  $\pi$  instead of  $\log P$ . Since their activity depends so little on lipophilic character ( $\pi_0 = -0.4$ ), it would appear that they must bring about their effect in an aqueous phase. Albert<sup>63</sup> has discussed the importance of the connection of the chelating power of dimethyldithiocarbamic acid with  $Cu^{2+}$  for fungicidal action. The relative unimportance of hydrophobic bonding apparent from eq 56 is also clear from the work of Weuffen<sup>64</sup> on antifungals of the type  $C_6H_5CH_2CH_2NHC(S)SR$  (R = CH<sub>3</sub> to  $n-C_{5}H_{11}$ ). Activity in this series is practically independent of the nature of R. Of interest is the negative sign of the coefficient associated with  $\sigma^*$  in eq 56. This indicates that electron-releasing groups which raise the electron density on the N atom increase activity. This is to be expected if chelating is the primary cause of toxicity. It must be kept in mind for this set of compounds that  $\pi$  for the alkyl groups and the steric effects of these groups  $(E_s)$  tend to vary in a similar manner. From the limited set of derivatives we have not been able to dissect out the two independent roles for R.

Wherever appropriate, attempts were made to evaluate steric effects of substituents using Taft's  $E_s$  parameter. Statistically valid results were not obtained with the set of congeners in Table II. For the bromoacetanilides of Table Ie, the steric nature of the R attached to the amide N appears significant. Equation 66 correlates the results with A. niger and eq 67 those with T. viride. For the work summarized in eq. 67with T. viride, fewer derivatives were studied and it is not possible to estimate log  $P_0$  or to estimate the role of  $\sigma^*$ . The steric effects of R, as revealed by the  $E_s$ term, are essentially the same in each equation. The positive coefficient with this term indicates that bulky groups hinder activity.  $\log P_0$  for eq 66 is considerably lower than that found for most of the other sets of congeners and indicates the possibility for a different mode of activity for the bromoamides. The large inter-

<sup>(61)</sup> L. P. Miller, S. E. A. McCallan, and R. M. Weed, Contrib. Boyce Thompson Inst., 17, 173 (1953).

<sup>(62)</sup> R. J. W. Byrde in "The Fungi," Vol. I, G. G. Anisworth and A. S. Sussman, Ed., Academic Press, New York, N. Y., 1965, p 526.

<sup>(63)</sup> A. Albert, "Selective Toxicity," 3rd ed, Wiley, New York, N. Y., 1965, p 259.

<sup>(64)</sup> W. Weuffen, Pharmazie, 21, 686 (1966).

cepts indicate the high intrinsic activity of the bromoamide function.

In addition to the intercepts, another generally useful parameter in the correlation equations is  $\log P_0$ . This is the optimum lipophilic character for a given set of congeners.<sup>9</sup> For the 6 sets of eq 21, 23, 27, 29, 54, and 55 where we have reasonably sharp 95% confidence intervals on this parameter, a mean value of  $5.6 \pm 1.0$  is found. This compares with a mean value for 8 sets of neutral drugs acting on Gram-negative bacteria of  $4.4 \pm 0.4$ . For 6 sets of *neutral* drugs acting on Gram-positive cells, a mean value of  $5.7 \pm 0.5$  was found. By this crude measure the fungi resemble Gram-positive cells more closely than Gram-negative cells. Of course it is well known that fungi like *C. albicans* give the Gram-positive test.

The mean log  $P_0$  for 6 sets (eq 42-47) of quaternary ammonium compounds having antifungal activity is  $2.6 \pm 0.5$ . This figure agrees well with the value of 2.6 found in eq 64 for antibacterial action. However, these values are lower than the mean figure of  $3.7 \pm 0.4$  found for quaternary ammonium compounds causing hemolysis. The higher log  $P_0$  for hemolysis indicates that more lipophilic derivatives can be made before reaching maximum activity for a given series. Log  $P_0$  is highly time dependent; that is, more lipophilic molecules require a longer period of time to reach their sites of action. Log  $P_0$  is also dependent on the nature of the material in the system. The red cell is a much simpler system in which the partitioning of the drug directly onto the surface of the cell is essentially the same as reaching the site of action. The process is much more complex with the fungi and bacteria, in part because of involvement with the growth media and in part because of the more complex nature of the organisms. The hydrophobic surface of an ammonium salt of  $\log P$ = 2.6 is large (e.g.,  $\log P(C_{16}H_{33}N^+(CH_3)_2CH_2C_6H_5)$  = 2.92). The fact that such molecules form micelles easily means that they tend to bind tightly to any hydrophobic area with which they come in contact. This greatly hinders their random movement to the critical sites of action in the membranes.

Neutral molecules acting on fungi and Gram-positive cells have  $\log P_0$  values of about 5.6 which is about 3 log units higher than charged ammonium ions. The greater number of C atoms for lipophilicity using the log P scale for charged compounds plus, very likely, the interaction of the charge itself with the proteinaceous material of the cell must somehow combine to set lower log  $P_0$  values on the charged molecules.

The same appears to be true for the anions. However, with the fatty acids of eq 48-51 there is such wide variation that the mean value of 1.7 has little meaning except that the values are much lower than for neutral compounds.

From the point of view of  $\log P_0$ , the initiazolines are most interesting. Since the  $pK_a$  of this compound is rather high (9.6 for E),  $\log P$  for the protonated form of the amine has been employed. The  $\log P_0$  found using these values is not at all close to that found for the other



ions of Table IIc. While the intercepts of the imidazolines are close to those found for the amines of eq 36 which are assumed to be acting in their protonated forms, the log  $P_0$  values are very much different. The log  $P_0$  values for the imidazolines are like those found for neutral molecules and it may be that this is their active form. If one uses log P for the neutral form of the imidazolines in, say, eq 34, an intercept of  $-0.81 \pm$ 1.0 is found. This would indicate no specificity for this function.

When dealing with very long aliphatic chains attached to a polar function, one cannot be sure that the additivity principle of calculating  $\log P$  by the addition of 0.5 for each CH<sub>2</sub> unit holds. We have made some attempt to investigate<sup>63</sup> this problem by studying the apparent partition coefficients of N-alkylpyridinium bromides. The difficulty of getting accurate  $\log P$  values of the higher members of the series precludes any statement at present about additivity for members of the series beyond  $C_{I4}$ . However, it is clear when one works at very low concentrations to avoid micelle formation or premicelle dimerization that additivity is almost constant in the C14-C18 range. Whether this small departure from additivity is the result of molecular oil droplet formation as Kauzmann<sup>66</sup> has suggested or whether it is due to some premicellar dimerization<sup>67</sup> is not clear. It does not seem to be a serious problem for our present level of comparison of  $\log P_0$  values.

In summary, the intrinsic antifungal activity of isolipophilic functions can be tentatively ordered on a logarithmic scale according to intercepts of Table II as in Table III. The ordering is of course crude and it

TABLE III

LOGARITHMIC SCALE OF ISOLIPOPHILIC ANTIFUNGAL ACTIVITY RNHC(=NH<sub>2</sub>)NH<sub>2</sub><sup>+</sup> 5

| PhHN N NHPh                               | 4        |
|-------------------------------------------|----------|
| 1,4-Cyclohexadienone                      | 3.5      |
| R₄N+                                      | 3.2      |
| RCH <sub>2</sub> NCS                      | 3.2      |
| BrCH <sub>2</sub> CONHR                   | 3        |
| $PhNHCH_2Ph$                              | 3        |
| $RNH_3^+$                                 | 2        |
| $CH_2CH_2$ +                              |          |
| NHR                                       | <b>2</b> |
| N=CH                                      |          |
| PhCH₂OH                                   | 1        |
| PhOCH <sub>2</sub> CHOHCH <sub>2</sub> OH | 1        |
| Phenols                                   | 0.5      |
| PhNCS                                     | 0.5      |
| $CH_2 = C(CH_3)CO_2Ph$                    | 0.5      |
| RNHC(=S)NHR                               | 0.2      |

will vary by at least 0.5 log unit, depending on what kind of response one uses in measuring activity (*i.e.*, inhibition or killing action). It will of course vary somewhat from one type of fungus to another. Nevertheless, it does enable one to compare different sets of congeners, setting aside the sometimes confusing factor of nonspecific toxicity due to simple lipophilic character. This factor alone can account for a large amount of

<sup>(65)</sup> R. N. Smith, D. Soderberg, and C. Hansch, unpublished results.

<sup>(66)</sup> W. Kauzmann, Advan. Protein Chem., 14, 37 (1959).

<sup>(67)</sup> P. Mukerjee, J. Phys. Chem., 69, 2821 (1965).

variation in the activity of a set of congeners. For example, in a set of neutral congeners having  $\log P_0$ of 5.5 and a dependence of activity on  $\log P$  of 0.6 (slope) in the linear relation between  $\log 1/C$  and  $\log P$ , the difference in activity of derivatives of  $\log P = 0$ and  $\log P = 5$  will be 3 log units. Unless this large variation in activity can be separated in structureactivity relationship discussions, it is quite difficult to begin to mechanistically classify different functional groups, especially when one gets beyond simple homologous series. How valuable such scales as that in Table III will ultimately be will not be known until more extensive studies have been made.

Acknowledgment.—We wish to thank Miss Catherine Church (Smith Kline and French research associate), Dr. William Glave, Dr. William Dunn, and Mr. David Soderberg for determining a number of the partition coefficients employed in this work. We thank Dr. Paul Craig of Smith Kline and French for the  $pK_a$  of N-2-hydroxyethylimidazoline.

# Crystal Structure of *dl*-Brompheniramine Maleate [1-(*p*-Bromphenyl)-1-(2-pyridyl)-3-*N*,*N*-dimethylpropylamine maleate]

#### M. N. G. JAMES AND G. J. B. WILLIAMS

Department of Biochemistry, The University of Alberta, Edmonton, Alberta, Canada

Received January 5, 1971

Recentic bromphenirantine maleate crystallizes in space group  $P_{2_1/c}$  with a = 9.863 Å, b = 10.836 Å, c = 21.494 Å, and  $\beta = 115.83^\circ$ . The crystal structure was solved by conventional Patterson and Fourier techniques and refined by least squares to weighted and nuweighted R factors of 6.37 and 4.55%, respectively. The propylamine chain is fully extended and adopts an asymmetrical disposition with respect to the 2 aryl moieties. The *p*-bromobenzyl group is partially occluded by the asymmetry and the 2-pyridyl ring is exposed, thus giving the molecule an open side. The maleic acid is in the monoanion form and is H bonded to the NMe<sub>2</sub> group. Molecular parameters are close to expected values with the exception of the location of the second base dissociable proton of the maleate, which is engaged in a very short asymmetric intraion H bond of length 2.415 Å.

The antihistaminic drngs as a class are thought to exert their action by successful competition with histamine for the allergic (H1) receptor site on the walls of smooth muscle tissue.<sup>1</sup> The title compound is a potent histamine antagonist and, because receptor sites are difficult to study directly, it was thought that useful information regarding molecular conformations of antihistaminic drugs could be obtained by defining the structure of this effector molecule.

The structure of histamine has recently been completed by two independent groups<sup>2</sup> and, more recently. one of these groups has published their preliminary results of the first X-ray study of an antihistamine.<sup>3</sup> The present work was begun in an attempt to delineate some of the seeningly relevant structural parameters for antihistaminic action. It is reasonable to suppose that if the antihistamine acts as a competitive inhibitor of histamine then there should be some points of significant structural similarity between them. In particular it seemed important to know if the N-N distance in brompheniramine was comparable to the 4.55-Å distance Kier<sup>4</sup> has postulated for the allergically active conformer of histamine. Another molecular parameter of interest was the dihedral angle between the 2 aromatic rings of brompheniramine since these have been implicated in the binding of this molecule to the H1 site.<sup>5</sup>

#### **Experimental Section**

Suitable crystals were easily grown by diffusion of Et<sub>2</sub>O into a soln of the complex in EtOH. Preliminary oscillation and Weissenberg photographs of a crystal exhibiting 2/m symmetry and max dimensions of  $0.20 \times 0.18 \times 0.20$  mm, showed the space group to be  $P_{2_1/c}$ . The crystal lattice data are summarized in Table I, the unit cell parameters being derived by least-squares

| TAE                                              | 81.E 1                     |
|--------------------------------------------------|----------------------------|
| Morphology                                       | 2/m                        |
| Space group                                      | $P2_1/c$                   |
| a                                                | $9.863 \pm 0.01$ Å         |
| b                                                | $10.836 \pm 0.007$ Å       |
| с                                                | $21.494~\pm~0.01~{ m \AA}$ |
| $\cos \beta$                                     | $-0.4356 \pm 0.0009$       |
| β                                                | $115.83 \pm 0.05^{\circ}$  |
| $V_{-}$                                          | 2067.67 Å <sup>3</sup>     |
| $ ho_{ m calcd} 4 ]C_{20}H_{23}O_4 BrN_2 ]/cell$ | $1.42~{ m g/cm^3}$         |
| $ ho_{ m meas}]( m C_2H_5)_{3}O/ m CH_2Br_2]$    | $1.43 \text{ g/cm}^3$      |
| μ                                                | $32.6 \text{ cm}^{-1}$     |
|                                                  |                            |

refinement of these parameters using the  $2\theta$ ,  $\chi$ , and  $\phi$  values for 12 reflections during the initial stages of data collection on a Picker FACS 1 diffractometer. A total of 3374 different reciprocal lattice points were examined using Ni-filtered Cu K radiation and the diffractometer in the coupled  $\theta/2\theta$  scan mode. The  $2\theta$  scan speed was 1°/min over a basic peak width of 1.8°, this width being increased as a function of  $\theta$  to cope with the dispersion of the Cn K $\alpha$  doublet.<sup>6</sup> Ten-second, fixed-position, background counts were taken on both sides of every Bragg reflection. A check was kept on the stability of the experimental situation during the 5day course of the data collection by measuring 3 standard reflections after every 30 data reflections. An examination of the standards as a function of time implied no significant crystal slippage or decomposition and so the data were judged accept-

<sup>(1)</sup> Barlow, R. B., "Introduction to Chemical Pharmacology," Methuen, London, 2nd ed, 1964, p 369.

<sup>(2)</sup> M. V. Veidis, G. J. Palenik, R. Schaffrin, and J. Trotter, J. Chem. Soc. A, 2659 (1969).
(3) G. R. Clark and G. J. Palenik, J. Amer. Chem. Soc., 92, 1777 (1970).

 <sup>(4)</sup> J., B. Kier, J. Med. Chem., 11, 441 (1968).

<sup>(5)</sup> Ref 1, pp 372-373.

<sup>(6)</sup> Arndt and Willis, "Single Crystal Diffractometry," Cambridge University Press, New York, N. Y., 1966, pp 173-174.